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Talk Outline
• Introduction


• Differentiable rendering theory and algorithms


• Differentiable rendering systems and applications


• Q&A
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What is Differentiable Rendering?
• Computing derivative images (with respect to various parameters)


Forward-rendering result Differentiable-rendering result
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Why Use Differentiable Rendering?
• Solving inverse-rendering problems


• i.e., inferring scene parameters based on images of the scene


• Integrating forward rendering into probabilistic inference and machine 
learning pipelines

• e.g., backpropagating losses during training


• Numerous applications in computer vision, computer graphics, computational 
imaging, VR/AR, …
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Forward and Inverse Rendering

Scene: "bed classic" from Jiraniano
Geometry, materials, lighting, ...

θ IForward rendering

I = ℛ(θ)

Inverse rendering

θ = ℛ−1(I)?

Scene parameters Rendered image
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Ray Tracing
• A heavily abused term in graphics and vision


• We use ray tracing to mean ray-surface intersection computations

• Applicable to both explicit (e.g., mesh) and implicit (e.g., SDF) surfaces




• Basic building block for most (if not all) physics-based rendering algorithms


• e.g., path tracing, bidirectional path tracing, …
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Physics-Based Forward Rendering
• Relies heavily on Monte Carlo integration


• Can capture complex light-transport effects

• Soft shadows, interreflection, subsurface scattering, …
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Physics-Based Inverse Rendering

Scene: "bed classic" from Jiraniano
Geometry, materials, lighting, ...

θ I
Scene parameters Rendered image

Inverse rendering

θ = ℛ−1(I)?

•Inverting physics-based 
forward rendering


•Crucial to many applications



Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Shape and Material Reconstruction

Rendering Abs. error
Joint optimization of object shape and spatially varying reflectance (our recent work)
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Computational Fabrication
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Determining the material configuration for individual voxels in full-color inkjet 3D printing
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Physics-Based Learning
• Integrating physics-based rendering into machine learning and 

probabilistic inference pipelines

• Inverse subsurface scattering [Che et al. 2020]

(a) auto-encoder network architecture
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(b) inverse transport network architecture
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Lighting
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Fig. 1: Inverse transport networks: (a) Traditional autoencoders
use two networks, encoder and decoder, to learn to predict pa-
rameters from images. (b) Inverse transport networks replace the
decoder with a differentiable Monte Carlo renderer, to improve the
generalization and physical accuracy of the predictions. During
training, the renderer is provided with the material parameter out-
put by the encoder network, as well as with groundtruth geometry
and illumination, to perform forward and backward evaluations
of an additional appearance-matching regularization term used to
learn the network weights. During testing, the encoder network is
used on its own, without the renderer: It takes as input a single,
fully uncalibrated (unknown geometry and illumination) image,
and produces as output a set of material parameters.

The regularization term in Equation (3) forces the neural network
to predict parameters ⇡d that not only match the groundtruth,
but also can be used with forward rendering to reproduce the
input images. This has two desirable effects: First, the parameters
predicted by the network are likely to be close to what would have
been obtained from analysis by synthesis, as the regularization
term in Equation (3) is equivalent to the analysis by synthesis
loss (1). Second, the regularization term forces the neural network
N [ŵ] to be approximately equal to the inverse of the volumetric
light transport operator T , that is, N [ŵ] ⇡ T �1. Given that
T models the physics of subsurface scattering for scenes of
arbitrary geometries and illumination, we expect the resulting
neural network to generalize well to novel scenes. We refer to
networks trained using the loss (2) as regressor networks (RN),
and to networks trained using (3) as inverse transport networks
(ITN), based on their above-discussed property.
Relationship to prior work. Regularization similar to Equa-
tion (3) has previously appeared in two general forms. The first
is autoencoder architectures [49], [50] that, in addition to the re-
gressor (encoder) network N [w] mapping images to parameters,
use a second decoder network D [u] that maps the parameters
back to images. Then, the regularization term in Equation (3) is
replaced with kId �D [u] (N [w] (Id))k2, and both the encoder
and decoder networks are trained simultaneously, potentially with-
out access to groundtruth parameters (self-supervised learning).
These architectures are of great utility when inferring semantic
parameters (e.g., a class label) of a scene, where there is generally
no analytical model for the forward mapping of these parameters
to images. However, when the unknowns ⇡ are scattering material
parameters, autoencoder architectures do not take advantage of
the rich knowledge we have about the physics governing the

forward operator T . Additionally, the forward mapping D [u] may
not generalize to novel scenes, as it is specific to the training
dataset. Figure 1 compares the autoencoder and inverse transport
architectures.

There are also networks that use regularization terms where
the light transport operator T is replaced with an approximate
rendering model [11], [12], [13], [14], [15]. These approximations
generally use direct lighting models, where photons are assumed
to only interact with the scene once between emission and detec-
tion (e.g., direct reflection without interreflections). Unfortunately,
these networks have limited applicability to the case of inverse
scattering, where the underlying physics are characterized by
extremely multi-path, multi-bounce light transport. Inspired by
these prior works, our ITNs are physics-aware learning pipelines
that can be used even in the presence of these higher-order
transport effects that are dominant in inverse scattering.
Training ITNs. The optimization problem (3) for ITN training is
computationally challenging: Evaluating the operator T requires
solving the radiative transfer equation [20]. In theory, training
could be performed using algorithms such as REINFORCE [51],
which do not require differentiating the regularization term and
only employ graphics rendering algorithms for forward evalua-
tions of T . However, such algorithms are known to suffer from
slow convergence.

Instead, we aim to optimize the loss (3) with state-of-the-art
stochastic gradient descent algorithms [59]. This requires using
differentiable rendering algorithms to estimate derivatives of T
with respect to material parameters ⇡ in an unbiased manner.
For this, we rely on prior work [4], [5], [6], [7] that devised
Monte Carlo rendering algorithms for simulating these derivatives
by simulating the full volumetric light transport in a physically-
accurate way. These algorithms have subsequently been general-
ized to scene parameters such as reflectance [44], [45], geome-
try [46], and pose [16], [47], [48]. For completeness, we provide
below an overview of the differentiable rendering formulation at
the basis of our work. We note that, because we optimize over
only material parameters, our differentiable rendering formulation
is significantly simpler than that required for dealing with global
geometry changes, and which has been developed extensively in
recent works [16], [47], [48].

Figure 1 provides an overview of our pipeline at training
and test time: During training, the network is connected to the
differentiable renderer. The network takes as input a single, high-
dynamic-range image, and produces as output a set of scattering
material parameters. During training, the network is connected
to the differentiable renderer. The renderer takes as input the
parameters produced by the network, as groundtruth geometry and
illumination, to compute values and gradients of the regularization
term in Equation (3). As we discuss in Section 6, because we
train the network using synthetic input images, the geometry and
illumination are readily available. During testing, the network is
used on its own, without the renderer. As our objective is to use
the network on testing images that are completely uncalibrated,
no geometry or illumination information is given as input to the
network during either training or testing.
Differentiable Monte Carlo volume rendering. To keep the
paper self-contained, we provide a brief overview of forward
and differentiable rendering in the context of subsurface scat-
tering. Our discussion largely follows [7]. The starting point for
both types of rendering is the path integral formulation of light
transport, which expresses the images captured by a radiometric
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Fig. 1: Inverse transport networks: (a) Traditional autoencoders
use two networks, encoder and decoder, to learn to predict pa-
rameters from images. (b) Inverse transport networks replace the
decoder with a differentiable Monte Carlo renderer, to improve the
generalization and physical accuracy of the predictions. During
training, the renderer is provided with the material parameter out-
put by the encoder network, as well as with groundtruth geometry
and illumination, to perform forward and backward evaluations
of an additional appearance-matching regularization term used to
learn the network weights. During testing, the encoder network is
used on its own, without the renderer: It takes as input a single,
fully uncalibrated (unknown geometry and illumination) image,
and produces as output a set of material parameters.

The regularization term in Equation (3) forces the neural network
to predict parameters ⇡d that not only match the groundtruth,
but also can be used with forward rendering to reproduce the
input images. This has two desirable effects: First, the parameters
predicted by the network are likely to be close to what would have
been obtained from analysis by synthesis, as the regularization
term in Equation (3) is equivalent to the analysis by synthesis
loss (1). Second, the regularization term forces the neural network
N [ŵ] to be approximately equal to the inverse of the volumetric
light transport operator T , that is, N [ŵ] ⇡ T �1. Given that
T models the physics of subsurface scattering for scenes of
arbitrary geometries and illumination, we expect the resulting
neural network to generalize well to novel scenes. We refer to
networks trained using the loss (2) as regressor networks (RN),
and to networks trained using (3) as inverse transport networks
(ITN), based on their above-discussed property.
Relationship to prior work. Regularization similar to Equa-
tion (3) has previously appeared in two general forms. The first
is autoencoder architectures [49], [50] that, in addition to the re-
gressor (encoder) network N [w] mapping images to parameters,
use a second decoder network D [u] that maps the parameters
back to images. Then, the regularization term in Equation (3) is
replaced with kId �D [u] (N [w] (Id))k2, and both the encoder
and decoder networks are trained simultaneously, potentially with-
out access to groundtruth parameters (self-supervised learning).
These architectures are of great utility when inferring semantic
parameters (e.g., a class label) of a scene, where there is generally
no analytical model for the forward mapping of these parameters
to images. However, when the unknowns ⇡ are scattering material
parameters, autoencoder architectures do not take advantage of
the rich knowledge we have about the physics governing the

forward operator T . Additionally, the forward mapping D [u] may
not generalize to novel scenes, as it is specific to the training
dataset. Figure 1 compares the autoencoder and inverse transport
architectures.

There are also networks that use regularization terms where
the light transport operator T is replaced with an approximate
rendering model [11], [12], [13], [14], [15]. These approximations
generally use direct lighting models, where photons are assumed
to only interact with the scene once between emission and detec-
tion (e.g., direct reflection without interreflections). Unfortunately,
these networks have limited applicability to the case of inverse
scattering, where the underlying physics are characterized by
extremely multi-path, multi-bounce light transport. Inspired by
these prior works, our ITNs are physics-aware learning pipelines
that can be used even in the presence of these higher-order
transport effects that are dominant in inverse scattering.
Training ITNs. The optimization problem (3) for ITN training is
computationally challenging: Evaluating the operator T requires
solving the radiative transfer equation [20]. In theory, training
could be performed using algorithms such as REINFORCE [51],
which do not require differentiating the regularization term and
only employ graphics rendering algorithms for forward evalua-
tions of T . However, such algorithms are known to suffer from
slow convergence.

Instead, we aim to optimize the loss (3) with state-of-the-art
stochastic gradient descent algorithms [59]. This requires using
differentiable rendering algorithms to estimate derivatives of T
with respect to material parameters ⇡ in an unbiased manner.
For this, we rely on prior work [4], [5], [6], [7] that devised
Monte Carlo rendering algorithms for simulating these derivatives
by simulating the full volumetric light transport in a physically-
accurate way. These algorithms have subsequently been general-
ized to scene parameters such as reflectance [44], [45], geome-
try [46], and pose [16], [47], [48]. For completeness, we provide
below an overview of the differentiable rendering formulation at
the basis of our work. We note that, because we optimize over
only material parameters, our differentiable rendering formulation
is significantly simpler than that required for dealing with global
geometry changes, and which has been developed extensively in
recent works [16], [47], [48].

Figure 1 provides an overview of our pipeline at training
and test time: During training, the network is connected to the
differentiable renderer. The network takes as input a single, high-
dynamic-range image, and produces as output a set of scattering
material parameters. During training, the network is connected
to the differentiable renderer. The renderer takes as input the
parameters produced by the network, as groundtruth geometry and
illumination, to compute values and gradients of the regularization
term in Equation (3). As we discuss in Section 6, because we
train the network using synthetic input images, the geometry and
illumination are readily available. During testing, the network is
used on its own, without the renderer. As our objective is to use
the network on testing images that are completely uncalibrated,
no geometry or illumination information is given as input to the
network during either training or testing.
Differentiable Monte Carlo volume rendering. To keep the
paper self-contained, we provide a brief overview of forward
and differentiable rendering in the context of subsurface scat-
tering. Our discussion largely follows [7]. The starting point for
both types of rendering is the path integral formulation of light
transport, which expresses the images captured by a radiometric

TrainingTesting

• Utilizing image loss provided by a volume path tracer to regularize training
• Use the trained encoder to solve inverse problems during testing
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Why is Physics-Based Differentiable Rendering Hard?
• Need to differentiate solutions of integral equations (or path integrals)


• e.g., the rendering equation: 


• The relation between such solutions and scene parameters can be highly complex


• Requires handling very large gradient matrices (e.g., with  or more entries)


• Can be tricky to implement correctly

L(x, ωo) = ∫𝕊2

fs(x, ωi, ωo) Li(x, ωo) dωi + Le(x, ωo)

1012



CVPR 2021 TutorialPhysics-Based Differentiable Rendering

Handling Many Parameters
• Forward-rendering function: 


•  ( : number of parameters)


•  ( : number of pixels)


• Gradient matrix: 


• Challenges:

•  and  can both be large (~ )


•  can involve  entries


• Reverse-mode automatic differentiation can  
easily run out of memory 

I = ℛ(θ)
θ ∈ ℝn n

I ∈ ℝm m

dℛ
dθ

(x) ∈ ℝm×n

m n 106

(dℛ/dθ) 1012
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Precautions Must Be Taken
• Precautions must be taken to ensure correctness


• E.g., applying automatic differentiation to a path tracer does not always work


• Should the PDF (used by a Monte Carlo estimator) be differentiated?

• Can go either way… 

(More on this later.)


• Discontinuities

• Differentiating only the integrand is insufficient 

(More on this later.)
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Why Not Simply Use Finite Differences?
Finite difference:





Potential problems:


• High bias (large ), rounding error (small )


• Need to correlate Monte Carlo samples


• Scales poorly with the number of parameters

∂ℛ
∂θi

(θ) ≈
ℛ(θ + εei) − ℛ(θ − εei)

2ε

ε ε
[Wikipedia]
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Global Illumination
• Can be simulated with modern differentiable renderers


• Required when solving many inverse-rendering problems

Computational fabrication Non-line-of-sight imaging
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Pixel-Level Antialiasing Matters

No antialiasing Perfect antialiasing

𝒫
One pixel

Pixel value = I(xc) Pixel value = 
1

|𝒫 | ∫𝒫
I(x) dx

xc

Binary-valued Continuous-valued

More information, more differentiable!

Can make inverse-rendering 
optimizations more robust
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Geometric Representations

• Ray-tracing-based forward rendering is agnostic to geometric representations


• The situation is more complex for differentiable rendering

• Due to the need to handle discontinuities (will discuss in details later)

Explicit 
(e.g., polygonal meshes)

Implicit 
(e.g., signed distance functions)
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Why you should use ray-tracing-based 
differentiable rendering
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Ray Tracing vs. Rasterization
• We believe that ray tracing is the way to go for future differentiable renderers

• Ray-tracing-based methods are not much slower than rasterization
• Hardware-accelerated ray tracing has been improving rapidly (e.g., Nvidia RTX)
• Visibility checks and intersections are typically not the performance bottleneck
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Ray Tracing vs. Rasterization

TargetInitial

23823 vertices, 44702 faces

1024x1024 at 2 spp (Titan RTX)
differentiable render time:
• psdr-cuda (ray-tracing-based)*:

2.8 msec
• PyTorch3D (soft rasterizer):

52.5 msec

*Luan et al., EGSR 2021 (to appear)

Other computations (loss 
backpropagation, mesh 
evolution and remeshing):

~ 1000 msec
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Ray Tracing vs. Rasterization

Optimized (psdr-cuda) Absolute error

Low High
23823 vertices, 44702 faces

Initial
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Ray Tracing vs. Rasterization
• We believe that ray racing is the way to go for future differentiable renderers

• Ray-tracing-based methods are not much slower than rasterization
• Hardware-accelerated ray tracing has been improving rapidly (e.g., Nvidia RTX)
• Visibility checks and intersections are typically not the performance bottleneck

• Ray-tracing-based methods can compute correct (i.e., unbiased) gradients
• Correct gradients matter in optimization!
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Ray Tracing vs. Rasterization

TargetOptimized (psdr-cuda) Optimized (PyTorch3D)

Optimization results after 5000 iterations (w/ identical settings)
Low High
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Second part of 
this tutorial

Third part of 
this tutorial

Ray Tracing vs. Rasterization
• We believe that ray racing is the way to go for future differentiable renderers

• Ray-tracing-based methods are not much slower than rasterization
• Hardware-accelerated ray tracing has been improving rapidly (e.g., Nvidia RTX)
• Visibility checks and intersections are typically not the performance bottleneck

• Ray-tracing-based methods can compute correct (i.e., unbiased) gradients
• Correct gradients matter in optimization!

• Ray-tracing-based methods can handle complex light-transport effects
• Soft shadows, environmental illumination
• Inter-reflections, radiative transfer (e.g., subsurface scattering), caustics

• Ray-tracing-based methods can provide gradients in general scenes
• Different shape representations, including point clouds, explicit (e.g., meshes), implicit (e.g., neural SDFs)
• Different types of cameras (e.g., intensity, lightfield, polarization, time-of-flight, hyperspectral, ...)
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What differentiable rendering does 
not give us
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Inverse rendering (a.k.a. analysis by synthesis)

Analysis-by-synthesis optimization:

𝜋𝜋: BRDF
𝜋𝜋: scattering

𝜋𝜋: camera 
pose

𝜋𝜋: illumination

𝜋𝜋: 3D shape and pose

min
scene

unknowns 𝜋𝜋

loss , render scene
unknowns 𝜋𝜋

Stochastic gradient descent (e.g., Adam):

Differentiable 
rendering

initialize 𝜋𝜋 ← 𝜋𝜋0

update 𝜋𝜋 ← 𝜋𝜋 + 𝜂𝜂 � dloss 𝜋𝜋
d𝜋𝜋

while (not converged)
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Why we need good initializations

• Analysis-by-synthesis objectives are highly non-convex, non-linear
• Multiple local minima

• Ambiguities exist between different parameters
• Multiple global minima

Ambiguities between BRDF and lighting 
[Romeiro and Zickler 2010] 

Ambiguities between shape and lighting 
[Xiong et al. 2015] 

Ambiguities between scattering 
parameters [Zhao et al. 2014] 
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Inverse rendering (a.k.a. analysis by synthesis)

Analysis-by-synthesis optimization:

min
scene

unknowns 𝜋𝜋

loss , render scene
unknowns 𝜋𝜋

Stochastic gradient descent (e.g., Adam):

Differentiable 
rendering

initialize 𝜋𝜋 ← 𝜋𝜋0

update 𝜋𝜋 ← 𝜋𝜋 + 𝜂𝜂 � dloss 𝜋𝜋
d𝜋𝜋

while (not converged)
Neural network

Learned initializations help:
• avoid local minima
• accelerate convergence
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Why we need discriminative loss functions

• Well-designed loss functions can help reduce ambiguities

• Perceptual losses can help emphasize design aspects that matter

• Differentiable rendering can be combined with any loss function that can be 
backpropagated through

VGG-based perceptual loss [Johnson et al. 2016] 
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Inverse rendering (a.k.a. analysis by synthesis)

Analysis-by-synthesis optimization:

𝜋𝜋: BRDF
𝜋𝜋: scattering

𝜋𝜋: camera 
pose

𝜋𝜋: illumination

𝜋𝜋: 3D shape and pose

min
scene

unknowns 𝜋𝜋

loss , render scene
unknowns 𝜋𝜋

Stochastic gradient descent (e.g., Adam):

Differentiable 
rendering

initialize 𝜋𝜋 ← 𝜋𝜋0

update 𝜋𝜋 ← 𝜋𝜋 + 𝜂𝜂 � dloss 𝜋𝜋
d𝜋𝜋

while (not converged)
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• The extent to which we can improve upon an initialization strongly depends on the 
signal-to-noise ratio of our measurements

• We need reliable camera models (noise, aberrations, other non-idealities) 

High signal-to-noise ratio is critical

Optical gradient descent [Chen et al. 2020] 
scene initial mesh optimized mesh

simulated 
data

measured 
data

Non-line-of-sight imaging [Tsai et al. 2019] 
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Differential Direct Illumination
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Account for discontinuities of 
integrand that depend on 𝜋𝜋

Account for changes in 
integration limits

Reminder from calculus

?d
d𝜋𝜋

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋
𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥 =

+

Differentiation under the integral sign
Also known as the Leibniz integral rule

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋 d
d𝜋𝜋

𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥

𝑓𝑓 𝑏𝑏 𝜋𝜋 ,𝜋𝜋
d𝑏𝑏(𝜋𝜋)

d𝜋𝜋
− 𝑓𝑓 𝛼𝛼 𝜋𝜋 ;𝜋𝜋

d𝑎𝑎(𝜋𝜋)
d𝜋𝜋

+ �
𝑖𝑖

𝑓𝑓 𝑐𝑐𝑖𝑖 𝜋𝜋 −,𝜋𝜋 − 𝑓𝑓 𝑐𝑐𝑖𝑖 𝜋𝜋 +,𝜋𝜋
d𝑐𝑐𝑖𝑖(𝜋𝜋)

d𝜋𝜋

Move derivative 
inside integral
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A simple example

𝑓𝑓 𝑥𝑥,𝜋𝜋 = �0 if 𝑥𝑥 < 2𝜋𝜋
1 if 𝑥𝑥 ≥ 2𝜋𝜋

+ 0 − 1
d(2𝜋𝜋)

d𝜋𝜋
Account for discontinuities of 
integrand that depend on 𝜋𝜋

+ 1
d(4𝜋𝜋)

d𝜋𝜋
− 0

d0
d𝜋𝜋

Account for changes in 
integration limits

d
d𝜋𝜋

�
0

4𝜋𝜋
𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥 = �

0

2𝜋𝜋 d
d𝜋𝜋

0d𝑥𝑥 + �
𝜋𝜋

4𝜋𝜋 d
d𝜋𝜋

1d𝑥𝑥 Move derivative 
inside integral
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Account for discontinuities of 
integrand that depend on 𝜋𝜋

Account for changes in 
integration limits

Interior integral

Boundary terms

Leibniz integral rule

d
d𝜋𝜋

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋
𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥 =

+

Differentiation under the integral sign
Also known as the Leibniz integral rule

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋 d
d𝜋𝜋

𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥

𝑓𝑓 𝑏𝑏 𝜋𝜋 ,𝜋𝜋
d𝑏𝑏(𝜋𝜋)

d𝜋𝜋
− 𝑓𝑓 𝛼𝛼 𝜋𝜋 ;𝜋𝜋

d𝑎𝑎(𝜋𝜋)
d𝜋𝜋

+ �
𝑖𝑖

𝑓𝑓 𝑐𝑐𝑖𝑖 𝜋𝜋 −,𝜋𝜋 − 𝑓𝑓 𝑐𝑐𝑖𝑖 𝜋𝜋 +,𝜋𝜋
d𝑐𝑐𝑖𝑖(𝜋𝜋)

d𝜋𝜋

Move derivative 
inside integral
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Interior integral

Simplified Leibniz integral rule

d
d𝜋𝜋

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋
𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥 =

Differentiation under the integral sign
Also known as the Leibniz integral rule

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋 d
d𝜋𝜋

𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥 Move derivative 
inside integral

Differentiation wrt 𝝅𝝅 simplifies to just moving derivative inside integral when:
• Integration limits are independent of 𝝅𝝅.
• Integrand discontinuities are independent of 𝝅𝝅.
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Reynolds transport theorem
Boundary integral

𝑓𝑓 = 0 𝑓𝑓 = 1

?d
d𝜋𝜋

�
Ω 𝜋𝜋

𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝐴𝐴 𝑥𝑥 = + �
𝜕𝜕Ω(𝜋𝜋)

𝑔𝑔 𝑥𝑥,𝜋𝜋 d𝑙𝑙 𝑥𝑥

𝜋𝜋
discontinuity points

discontinuity points ∪ boundary of domain Ω
(if they depend on 𝜋𝜋)

=Boundary domain
Reynolds transport theorem [1903]

Generalization of the Leibniz rule

Interior integral

�
Ω(𝜋𝜋)

d𝑓𝑓(𝑥𝑥,𝜋𝜋)
d𝜋𝜋

d𝐴𝐴 𝑥𝑥
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Unit hemisphere

Reflectance 
(BRDF)

Incident 
radiance

Shading wrt
normal 𝒏𝒏

Direct illumination integral

Radiance from 𝑥𝑥:

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓
Monte Carlo rendering:
• Sample random directions 𝜔𝜔𝑖𝑖

𝑠𝑠 from PDF 𝑝𝑝 𝜔𝜔𝑖𝑖

• Form estimator

𝐼𝐼 ≈�
𝑠𝑠

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖𝑠𝑠,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖
𝑠𝑠 𝑛𝑛 � 𝜔𝜔𝑖𝑖

𝑠𝑠

𝑝𝑝 𝜔𝜔𝑖𝑖
𝑠𝑠

𝐼𝐼 = �
ℍ2

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)
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Differential direct illumination

Differential radiance from 𝑥𝑥:

d𝐼𝐼
d𝜋𝜋

=
d

d𝜋𝜋
�
ℍ2

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓
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Differential direct illumination: local parameters

Differential radiance from 𝑥𝑥:

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓

𝝅𝝅: local parameters
• BRDF parameters
• shading normal
• illumination brightness

Monte Carlo differentiable rendering:
• Sample random directions 𝜔𝜔𝑖𝑖

𝑠𝑠 from PDF 𝑝𝑝 𝜔𝜔𝑖𝑖

• Form estimator

d𝐼𝐼
d𝜋𝜋

≈�
𝑠𝑠

d
d𝜋𝜋 𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖

𝑠𝑠,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖𝑠𝑠 𝑛𝑛 � 𝜔𝜔𝑖𝑖
𝑠𝑠

𝑝𝑝 𝜔𝜔𝑖𝑖
𝑠𝑠

Just move derivative inside integral

Just differentiate numerator
[Khungurn et al. 2015, Gkioulekas et al. 2015]

d𝐼𝐼
d𝜋𝜋

= �
ℍ2

d
d𝜋𝜋

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)



CVPR 2021 TutorialPhysics-Based Differentiable Rendering

Differentiate entire contribution
[Zeltner et al. 2021]

d𝐼𝐼
d𝜋𝜋

≈�
𝑠𝑠

d
d𝜋𝜋

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖
𝑠𝑠,𝜔𝜔𝑜𝑜,𝜋𝜋 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖

𝑠𝑠 𝑛𝑛 � 𝜔𝜔𝑖𝑖
𝑠𝑠

𝑝𝑝 𝜔𝜔𝑖𝑖
𝑠𝑠,𝜋𝜋

d𝐼𝐼
d𝜋𝜋

= �
ℍ2

d
d𝜋𝜋

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜,𝜋𝜋 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

Alternative estimator

Differential radiance from 𝑥𝑥:

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓

𝝅𝝅: local parameters
• BRDF parameters

Monte Carlo estimation:
• Sample random directions 𝜔𝜔𝑖𝑖

𝑠𝑠 from PDF 𝑝𝑝 𝜔𝜔𝑖𝑖 ,𝜋𝜋
• Form estimator

Just move derivative inside integral
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Differential direct illumination: global parameters

Differential radiance from 𝑥𝑥:

d𝐼𝐼
d𝜋𝜋

=
d

d𝜋𝜋
�
ℍ2

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓

𝝅𝝅: global parameters
• shape and pose of 

different scene elements 
(camera, sources, objects)

= �
ℍ2

d
d𝜋𝜋

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

Need to use full Reynolds transport theorem
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𝐼𝐼 = �
ℍ2

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

Discontinuities in the integrand

Integrand
𝑓𝑓 𝜔𝜔𝑖𝑖

Discontinuous points 
(𝜋𝜋-dependent)

Low High

𝝅𝝅: size of the emitter

𝑓𝑓 𝜔𝜔𝑖𝑖
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Applying the Reynolds transport theorem

Low High

𝐼𝐼 = �
ℍ2

𝑓𝑓 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 d𝜎𝜎(𝜔𝜔𝑖𝑖)

d𝐼𝐼
d𝜋𝜋

= �
ℍ2

d𝑓𝑓
d𝜋𝜋

d𝜎𝜎 + �
𝜕𝜕ℍ2

𝑔𝑔 d𝑙𝑙

Interior integral
(same as for local 

parameters)

Boundary
integral Integrand

𝑓𝑓 𝜔𝜔𝑖𝑖

Discontinuous points 
(𝜋𝜋-dependent)

[Ramamoorthi et al. 2007, Li et al. 2019]
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Includes visibility, fall-off, 
and foreshortening terms

Reparameterizing the direct illumination integral
Hemispherical integral

Change of 
variables

Surface integral

𝒚𝒚𝓛𝓛(𝜋𝜋)

𝐼𝐼 = �
𝓛𝓛(𝜋𝜋)

𝑓𝑓 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚 d𝐴𝐴(𝒚𝒚)

𝒙𝒙𝒙𝒙

𝝎𝝎𝒊𝒊

𝐼𝐼 = �
ℍ2
𝑓𝑓 𝝎𝝎𝒊𝒊 d𝜎𝜎(𝝎𝝎𝒊𝒊)
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constant domain evolving domain

continuousdiscontinuous

Reparameterizing the direct illumination integral
Hemispherical integral

Change of 
variables

Surface integral

Low High

𝐼𝐼 = �
ℍ2
𝑓𝑓 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖) 𝐼𝐼 = �

ℒ(𝜋𝜋)
𝑓𝑓 𝑦𝑦 → 𝑥𝑥 𝐺𝐺 𝑥𝑥,𝑦𝑦 d𝐴𝐴(𝑦𝑦)
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Differentiating the hemispherical integral
Low High Discontinuities of 𝑓𝑓𝜋𝜋: size of the emitter

𝒙𝒙

𝝎𝝎

Differentiation

Reynolds transport 
theorem 

𝐼𝐼 = �
ℍ2
𝑓𝑓 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝜄𝜄)

d𝐼𝐼
d𝜋𝜋

= �
ℍ2

d(𝑓𝑓)
d𝜋𝜋

d𝜎𝜎 + �
𝜕𝜕ℍ2

𝑔𝑔 d𝑙𝑙

Interior Boundary
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𝒙𝒙

Differentiating the area integral
Low High Boundary of 𝓛𝓛(𝜋𝜋)𝜋𝜋: size of the emitter

Differentiation

Reynolds transport 
theorem 

d𝐼𝐼
d𝜋𝜋

= �
𝓛𝓛(𝜋𝜋)

d(𝑓𝑓𝑓𝑓)
d𝜋𝜋

d𝐴𝐴 + �
𝜕𝜕𝓛𝓛(𝜋𝜋)

𝑔𝑔 d𝑙𝑙

Interior Boundary

𝐼𝐼 = �
ℒ(𝜋𝜋)

𝑓𝑓 𝑦𝑦 → 𝑥𝑥 𝐺𝐺 𝑥𝑥,𝑦𝑦 d𝐴𝐴(𝑦𝑦)
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Sources of discontinuities

Boundary edge

Topology-driven Visibility-driven 

Silhouette edgeSharp edge

Silhouette
detection
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Significance of the boundary integral

Original image Derivative image
w.r.t. vertical offset of

the area light and the cube

Derivative image
w/o boundary integral
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Gradient Accuracy Matters
Inverse-rendering results with identical optimization settings

Luan et al. 2021
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Sources of discontinuities

Boundary edge

Topology-driven Visibility-driven 

Silhouette edgeSharp edge

Silhouette
detection

• We still need to account for visibility discontinuities when using smooth 
closed surfaces (e.g., neural SDFs)

[Gargallo et al., ICCV 2007] 
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Handling Global Illumination
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Background: Path Integral for Global Illumination

Measurement 
contribution

Light path !" = (%!, %", %#, %$)

!!
!"

!#

!$
• Introduced by Veach [1997] and extended 

by Pauly et al. [2000]

Path space
Area-product 

measure

! = # 		% &' 		d	)(&')
!

Pixel value

• Can capture both surface reflection/refraction 
and volumetric (i.e., subsurface) scattering

• Theoretical foundation of most modern 
forward rendering techniques
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Background: Estimating Path Integrals

Light path !" = (%!, %", %#, %$)

!!
!"

!#

!$
Monte Carlo estimator:

Probability density 
for sampling path x̄

⟨I⟩ =
f(x̄)
p(x̄)

Measurement 
contribution

Path space
Area-product 

measure

! = # 		% &' 		d	)(&')
!

Pixel value
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(The full derivation is quite involved…)

Differential Path Integral
Path-space differentiable rendering [Zhang et al. 2020, 2021]

Interior integral Boundary integral

d
dθ (∫Ω

f(x̄) dμ(x̄)) = ∫Ω

·f(x̄) dμ(x̄) + ∫∂Ω
g(x̄) dμ′￼(x̄)
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Differential Path Integral
Path-space differentiable rendering [Zhang et al. 2020, 2021]

Interior integral

d
dθ (∫Ω

f(x̄) dμ(x̄)) = ∫Ω

·f(x̄) dμ(x̄) + ∫∂Ω
g(x̄) dμ′￼(x̄)

!!
!"

!#

!$

Original
light path

Interior integral

• Defined on the ordinary path space 

• The integrand  can be obtained by differentiating 

the ordinary measurement contribution function 

Ω
·f

f



Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Boundary
light path !!

!"

!#

!$

Boundary segment

Differential Path Integral

Boundary integral

Path-space differentiable rendering [Zhang et al. 2020, 2021]

d
dθ (∫Ω

f(x̄) dμ(x̄)) = ∫Ω

·f(x̄) dμ(x̄) + ∫∂Ω
g(x̄) dμ′￼(x̄)

Boundary integral

• Defined on the boundary path space 

• A boundary light path is the same as an original one 

except having exactly one boundary segment

∂Ω
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Differential Path Integral

Interior integral Boundary integral

Path-space differentiable rendering [Zhang et al. 2020, 2021]

Physics-based differentiable rendering generally requires estimating both integrals

Challenges:
• Differentiating    w.r.t. many parameters (interior)


• Handling discontinuities (boundary)

f

d
dθ (∫Ω

f(x̄) dμ(x̄)) = ∫Ω

·f(x̄) dμ(x̄) + ∫∂Ω
g(x̄) dμ′￼(x̄)
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Differential Interior Path Integral

Interior integral

Path-space differentiable rendering [Zhang et al. 2020, 2021]

d
dθ (∫Ω

f(x̄) dμ(x̄)) = ∫Ω

·f(x̄) dμ(x̄) + ∫∂Ω
g(x̄) dμ′￼(x̄)

• Computing    requires differentiating    w.r.t. ·f f θ
• This can be done via automatic differentiation, but …


• We have many (e.g., ) path integrals to evaluate (one per pixel)

• There can be many (e.g., ) parameters

106

106

• Huge gradient matrices (e.g., with  entries), not enough memory!1012

Specialized computational differentiation methods have 
been developed [Nimier-David et al. 2020, Vicini et al. 2021]
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Differential Path Integral

Interior integral Boundary integral

Path-space differentiable rendering [Zhang et al. 2020, 2021]

Physics-based differentiable rendering generally requires estimating both integrals

Challenges:
• Differentiating    w.r.t. many parameters (interior)


• Handling discontinuities (boundary)

f

d
dθ (∫Ω

f(x̄) dμ(x̄)) = ∫Ω

·f(x̄) dμ(x̄) + ∫∂Ω
g(x̄) dμ′￼(x̄)
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Recap: Significance of the Boundary Integral

Original image Derivative image 
w.r.t. vertical offset of 

the area light and the cube

Derivative image 
w/o boundary integral

Negative PositiveZero
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Handling Discontinuities
• Objective: estimating the integral over all boundary light paths (that are the same as 

an original one except having exactly one boundary segment)


• (Solution 1) Monte Carlo edge sampling

• Introduced by Li et al. [2018]


• Also used by Zhang et al. [2019] Boundary
light path

Fixed
Boundary se

gment Sampled

To sample a boundary segment:


• Fix one endpoint

• Sample the other from discontinuity boundaries
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Recap: Sources of Discontinuities 

Boundary edges

(Topological) boundary of an object

Sharp edges

Surface-normal discontinuities 
(e.g., face edges)

Silhouette edges

View-dependent object silhouettes



CVPR 2021 TutorialPhysics-Based Differentiable Rendering

Handling Discontinuities
• Objective: estimating the integral over all boundary light paths (that are the same as 

an original one except having exactly one boundary segment)


• (Solution 2) multi-directional sampling of boundary paths

• Enabled by the path-integral formulation [Zhang et al. 2020, 2021]

To sample a boundary path:


• Start from the boundary segment in the middle

Boundary
light path

Boundary se
gment• Then construct the source and sensor subpaths
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Physics-Based Differentiable Rendering Algorithms
• Boundary-sampling differentiable rendering


• Path tracing with edge sampling [Li et al. 2018, Zhang et al. 2019] (solution 1)


• Path-space differentiable rendering [Zhang et al. 2020, 2021] (solution 2)


• Area-sampling differentiable rendering

• Avoids boundary integrals altogether (Sai will cover this later)

To be 
discussed 
next
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Differentiable Path Tracing with Edge Sampling

Main path

Side paths

Side paths

Interior integral Boundary integral

= ∫Ω

·f(x̄) dμ(x̄) + ∫∂Ω
g(x̄) dμ′￼(x̄)

d
dθ (∫Ω

f(x̄) dμ(x̄))

Differentiable path tracing with edge sampling


• Trace main paths to estimate the interior integral

• Same as ordinary path tracing (for forward rendering)

• Trace additional side paths for the boundary integral

• Each side path begins with a boundary segment 

(obtained with edge sampling)
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Inverse-Rendering Result [Zhang et al. 2019]

Parameters

Cube roughness

Apple position

Parameters
Target Optimization process

Light-transport phenomena: rough reflection and refraction 
subsurface scattering



Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Differentiable Path Tracing with Edge Sampling

Boundary
light path

Fixed
Boundary se

gment Sampled

To sample a boundary segment:


• Fix one endpoint

• Sample the other from discontinuity boundaries

Requires silhouette detection, which can be expensive!
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Path-Space Differentiable Path Tracing

Interior integral Boundary integral

= ∫Ω

·f(x̄) dμ(x̄) + ∫∂Ω
g(x̄) dμ′￼(x̄)

d
dθ (∫Ω

f(x̄) dμ(x̄))

Path-space differentiable path tracing


• Trace main paths to estimate the interior integral

• Same as forward rendering

• Trace additional boundary paths for the boundary 
integral separately (using multi-directional sampling)

Main path

Boundary 

path
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Path-Space Differentiable Path Tracing

Boundary
light paths

Unidirectional path tracing + NEE

Unidirectional estimator


• Interior: unidirectional path tracing

• Boundary: unidirectional sampling of subpaths

Boundary
light paths

Bidirectional path tracing

Bidirectional estimator


• Interior: bidirectional path tracing

• Boundary: bidirectional sampling of subpaths
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Inverse-Rendering Result [Zhang et al. 2020]

Target

InitialConfig.

Scene configuration:

• A glossy ring lit by four colored light sources

• Optimize cross-sectional shape of the ring


Light-transport phenomenon:

• Caustics
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Inverse-Rendering Comparison [Zhang et al. 2021]

Optimizing the position of a small area light

(identical inverse-rendering configurations, equal-time per iteration)

Pa
th
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pa
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m
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Negative PositiveZero
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Inverse-Rendering Result [Zhang et al. 2021]
Initial Target

Jointly optimizing of the bunny’s:

• Shape

• Surface roughness

• Optical density

Negative PositiveZero
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Boundary methods can run into some problems

:  Boundary samples

:  Area samples

Presenter
Presentation Notes
Now these boundary methods typically introduce a new integral over discontinuities.
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Boundary methods can run into some problems

:  Boundary samples

:  Area samples

Some challenges faced

Integrating over arbitrary discontinuities can be tricky

Silhouette sampling Depth complexity Perfect specularities

Presenter
Presentation Notes
Estimating this can have a few challenges that we don’t see for the forward rendering integral:
For one, since global illumination can require integrating the radiance at arbitrary points in the scene, finding those edges that contribute to the derivative can require additional data structures for book-keeping. It must also deal with the fact that samples on edges can be occluded from vision, which can become a large problem for dense geometry where most edges are occluded. 
These methods can also have issues when you want to use perfectly specular surfaces. This is particularly true for edge-sampling, since you have to invert the mirror to connect edge samples to the camera.
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Avoid discontinuities through reparameterization

Reparameterizing Discontinuous 
Integrands for Differentiable Rendering

[Loubet 2019]

Transform the space with θ. 
“Cancels” discontinuities. 

Heuristic Approximation!
May not work for all samples. 

Presenter
Presentation Notes
These problems motivated Loubet et al to ask whether we can avoid sampling these discontinuities.
Since the discontinuities are only a problem because they move when you change parameters, (*) the idea is: why not transform the entire space with the discontinuities?
Their method therefore finds a transformation for it’s sampled rays (*) such that the movement of the discontinuities are cancelled by the transformation.
Unfortunately, it is hard to find a transformation that accounts for all discontinuities. (*) So, they use a heuristic blurring approach to approximate this motion, and therefore this method produces biased gradients.
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Unbiased Warped-Area Sampling for Differentiable Rendering 

Sai Bangaru, Tzu-Mao Li, Fredo Durand
(MIT CSAIL)

SIGGRAPH Asia 2020

Presenter
Presentation Notes
We’ll look at another area approach that avoids discontinuities, but is also able to produce unbiased gradients. We’ll also see what the challenges and tradeoffs are versus the boundary methods.
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The Reynolds Transport Theorem

Interior term

=

: Set of discontinuous points

: Set of continuous points

Edge term

+

Presenter
Presentation Notes
Now as Shuang and Ioannis have already covered but I will recap here, (*) the correct derivative of an integral can be expressed using the Reynolds transport theorem. Essentially, the derivative of an integral is the sum of two parts: (*) The first is the integral of the derivative defined over the interior set D of continuous points. Note that this term is equivalent to applying autodiff. 
(*) The second component is an integral over all the discontinuous points and this captures the contribution from the change of boundaries. 
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Converting Edge-Samples to Area-SAmples

Goal: Rewrite                                 into area integral

is estimated through edge-samples

Presenter
Presentation Notes
Now edge-sampling (*) tries to estimate this term by generating samples on these boundaries. Here we ask: (*) Can we estimate this same integral without having to generate such samples? In other words, can we rewrite this boundary integral to an area integral that is defined in the interior set D. 
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The Divergence Theorem [Gauss 1813]

Presenter
Presentation Notes
For this, we apply the divergence theorem, which states that for a integral of some vector quantity over the boundary of a (*) domain, there is an equivalent integral of the divergence of this vector quantity over the interior of the domain.
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Applying the divergence theorem to the Edge Integral

can be estimated through area-samples

Solution: Rewrite                              into

Goal: Rewrite                               into area integral

Presenter
Presentation Notes
We can now realize our goal of rewriting the edge integral into an area integral. (*) This is simply an integral over the divergence of the vector quantity f times v. But, we run into a subtle problem here. The vector v that we get from the Reynolds transport theorem is only defined on the boundaries shown in blue in the illustration. This means we must use a different quantity defined over the continuous set D, and we refer to this as the warp field V_theta. Assuming we have such a field, these two integrals are now (*) equivalent, and the key advantage is that we can now estimate this using just area samples. 
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, the domain of integration

A 2D Example Scene

, the discontinuous set

Presenter
Presentation Notes
In order to visualize the warp field its helpful to consider a 2D example. (*) Consider a scene where our image is simply the integral of the intensity over the domain of the semicircle centered on the camera. (*) In this example, the _boundaries_ of the integral are simply the points that correspond to the silhouette of the polygon when projected onto the camera. 
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Velocity : the Boundary derivative

: Derivative of boundary position w.r.t θ

θ

Presenter
Presentation Notes
Now,  the velocity v is the rate (*) at which these values change as the underlying scene moves with theta. (*) If we plot these values onto a graph, we see that this is only defined on the set of discontinuous points, and is undefined everywhere else. This is the quantity that edge-sampling would compute for its integral.
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Warp Field      : Extension of      to all points

: defined over 𝝏𝝏𝝏𝝏

: defined over 𝑫𝑫

Presenter
Presentation Notes
But remember that _we_ want to compute the equivalent _area_ integral. (*) We need to find a warp field V_theta defined over the entire domain (not just the silhouette points). What is this warp field? Well, it must satisfy two conditions.
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Validity of 

Rule 1: Continuous

Presenter
Presentation Notes
The first one says that the warp must be continuous. This is easy to see because if V is not continuous, its divergence doesn’t exist. For example, the one on the left is continuous, while the one on the right isn’t. 
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Validity of 

Rule 2: Boundary Consistent

Presenter
Presentation Notes
The second rule is that it must be equal with the velocity at all boundary points. This rule follows directly from the divergence theorem. As an example, this field on the left is boundary consistent, while this field on the right is not consistent. If we have a field that satisfies both these rules, then our integral conversion is correct. Our problem has now been reduced to smoothly interpolating the velocity at discontinuous points, to the rest of the domain.
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Interpolation without knowledge of boundaries

Available quantities

Origin point

Ray

Primitive

Intersection

No access to discontinuity points

Presenter
Presentation Notes
Producing this interpolation can be a bit tricky. (*) Unlike a traditional interpolation problem, the only quantities we know about a specific sample are the origin point, the ray and the intersected primitive. What we don’t know are the locations of the discontinuities. Our primary goal is to interpolate while avoiding the cost of locating these boundaries. and so we call this the ‘blind interpolation’ problem where don’t have explicit access to the positions of the control points.
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Constructing 

Attempt 1                 Find            through implicit derivative  

At all points (not just boundaries)

+ Boundary consistent
- Not continuous

(Incorrect)

Presenter
Presentation Notes
One way to find such an interpolation is to use the implicit derivative approach. (*) We know the intersection point Y is a function of both our ray direction omega and the scene parameter theta. This means the two quantities are implicitly related through the intersection function. (*) We can then find the derivative of omega w.r.t theta just by taking the ratio of their individual derivatives. 
(*) When we plot the result, we see that the warp field is by definition consistent at the boundaries, but isn’t defined anywhere outside the surface because the intersection doesn’t exist. So this isn’t continuous. 
Intuitively, we can try to blur this in some way.
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Constructing 

Attempt 2                  Filter Attempt 1 with a Gaussian filter

k(.,.) = Gaussian filter

+ Continuous
- Not boundary consistent

(Incorrect)

Presenter
Presentation Notes
And that’s our second attempt: (*) We convolve the entire domain with a uniform Gaussian filter by introducing another integral. (*) Predictably, the resulting warp field is continuous, but we see that a uniform blur has no guarantees on preserving consistency at the boundary points.
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Boundary-Aware Weighting

Ideal weighting function

Goal: Find weights                              s.t. at boundaries.=

Approach Dirac delta near boundaries 

Presenter
Presentation Notes
At a high-level, what we want to do is blur the function at interior points while keeping the non-filtered values 
at the boundaries. And for this we need boundary dependent weights that are smooth in the interior of the surface, but a sharp Dirac delta at 
boundary points. Intuitively, this works because convolving a function with a Dirac delta just returns the same function.
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Boundary-Aware Weighting

Available quantities

Origin point

Ray

Primitive

Intersection : Boundary test function 

Discontinuity set (Boundary sampling)

Implicit function of the boundary
(Boundary testing)

= 0  for   

such that 

Don’t have

Do have

Presenter
Presentation Notes
However, remember that we don’t actually have access to the set of discontinuities. (*) We can only access the current intersection point and its local geometry. 
It turns out that (*) we can still achieve our goal if we can instead compute some function B(.) whose zero-set is the set of discontinuous points. 
Intuitively, this is an implicit representation of the boundary and comes with the advantage that it is much easier to compute when compared to explicitly finding the 
boundary. 
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Boundary-Aware Weighting

Available quantities

Origin point

Ray

Primitive

Intersection : Boundary test function 

Discontinuity set (Boundary sampling)

Implicit function of the boundary
(Boundary testing)

= 0  for   

such that 

Don’t have

Do have

Implicit Boundary through geometric normals

at boundaries

Presenter
Presentation Notes

As an example, imagine we have a smooth shape, we can now use the dot product of the ray direction with the intersection’s normal as the boundary function, (*) because conveniently, this is 0 at boundaries.
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Constructing 

Our Approach                  Filter Attempt 1 with harmonic weights

+ Boundary consistent
+ Continuous

Distance function Boundary test

Presenter
Presentation Notes
Using this we can design convolution weights based on harmonic interpolation. Harmonic weights are just the inverse of the distance between the two points. 
However, instead of using only distance, we pad it with our implicit boundary function. 

Effectively this means the contribution of a boundary point approaches infinity as the sample point approaches the boundary. (*) This weighting scheme now produces a field that is both boundary consistent and continuous.
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Computing

1. Sample path using path tracer                  (N paths)

2. Sample auxiliary rays                 (N’ rays)

3. Compute boundary term B() locally

4. Compute weight k(.,.) and 

5. Find weighted mean

For each bounce:

Presenter
Presentation Notes
Now that we have a warp field, we need to numerically compute it, which requires another Monte Carlo sampler.

Putting this all together (*) our process first uses a traditional path tracer to sample a light path. 
At each bounce, (*) we sample auxiliary rays for the inner integral. (*) We then use autodiff to find the implicit derivative and the weights 
at each of these auxiliary rays. (*) Finally, we compute the weighted mean of all these rays to find an estimate for the warp at the current bounce. 






RESULTS

Presenter
Presentation Notes
Now we move on to some results from our method.
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Area-sampling handles higher-order effects better

𝑰𝑰Image Reference 
Derivative

Li et al. 2018 Ours
without 

Russian roulette

Ours
with 

Russian roulette
Edge-sampling

Presenter
Presentation Notes
When comparing against edge-sampling, area methods tend to handle global illumination better. (*)Here, we see that edge-sampling has trouble with specular reflections. This phenomenon gets worse for more complex geometry like the Hedge.
By contrast, (*) our approach avoids this problem because we use a typical path tracer for derivative samples and benefit from the forward path tracer’s importance sampling. 
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Pose estimation can fail with biased gradients

Multiple Initializations

Optimization trajectories

(Biased gradients)

Presenter
Presentation Notes
As we mentioned before our method is an unbiased version of the other area method: reparameterization.
But does that bias actually matter for applications? We see that for a 6 degree-of-freedom pose estimation problem for complex geometry, biased methods can have badly behaved gradients that can cause the optimization to diverge completely. We also verify the robustness of the warped-sampling approach by using several different initializations. This method converges on almost all initializations.
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Pose estimation can fail with biased gradients

(Biased gradients)

Presenter
Presentation Notes
Also consider a more complicated problem of trying to estimate the pose of a corkscrew using _just_ the shadows. The complicated geometry make this very difficult, and you need accurate gradients to make progress beyond a certain point. We’ll point out that biased gradients get the coarse pose correct, but the fine adjustment fails.
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Summary of Warped-area sampling

Edge-integral to 
Area-integral

Warp field conditions Harmonic interpolation

Presenter
Presentation Notes
To summarize warped-area sampling, we first applied the divergence theorem to convert the edge-integral into an area-integral over a warp field. We then derived the conditions on this field for this to be valid, and finally we described one approach to computing such a warp field using harmonic interpolation. 
In doing this we avoid discontinuity sampling, but at the cost of additional convolution rays for each primary ray.

Now let’s change gears and take a step back
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� �
(Bangaru 2020) (Du 2020)

Many programs in graphics have this problem

Presenter
Presentation Notes
Now we’ve seen that the physically-based rendering equation is typically an integral. I would actually like to draw your attention to the fact that a lot of graphics applications actually have this same issue. They are integrals over discontinuities. That includes Ray-tracing, rasterization, (*) finite element simulation as well as (*) physical trajectory simulation
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� �
(Bangaru 2020) (Du 2020)

Etc..

We have seen why it’s difficult 
to differentiate such integrals

Many programs in graphics have this problem

Presenter
Presentation Notes
, and (*) many more.
Shuang and Ioannis have given you an idea of just why this is a difficult task.
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Existing solutions to this specific problem

Presenter
Presentation Notes
Now, each of these problems do have solutions. We have already seen different methods for path tracing. There’s a similar situation for rasterization, (with SoftRas and the same goes for differentiating physical simulation)
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These are hand-derived for their pipelinesIntegrals of
discontinuities

ray_trace(t)

rasterize(t)

simulate(t)

Automatic
Differentiation? Derivative program

𝑑𝑑
𝑑𝑑𝑑𝑑?

Existing solutions to this specific problem

Presenter
Presentation Notes
One issue with these works is (*) that they hand-derive solutions for their fixed pipeline, 
which doesn’t transfer easily to different domains. 
For instance, SoftRas cannot be applied directly to a finite elements simulation without manual re-derivation.
(*)It is natural to wonder, then, if we can automate the process (*), 
and the goal of our work is to provide a systematic solution to this question

This is not to say that hand-derived methods don’t work. There are several approaches that successfully provide solutions for their problem domains, (including some presented at this very session!)? 
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Systematically Differentiating Parametric Discontinuities
Sai Bangaru*, Jesse Michel*, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, Jonathan Ragan-Kelley

(MIT CSAIL & UC Berkeley)

SIGGRAPH 2021 (to appear)

Presenter
Presentation Notes
And that is what I’ll be talking about now. 
In this work we propose a new auto-diff approach for the types of integrals we have encountered so far.

But to see what’s wrong with existing auto-diff methods, we ‘ll start with a simple example.
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A simple demonstration

Presenter
Presentation Notes
Let’s see a very simple example where we try to compute the derivative with respect to t of an integral with the parametric discontinuity x < t.
The bracket notation is defined so that if x is less than t then the integrand is 1 and it is 0 otherwise
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Derivative of the analytical integral

Presenter
Presentation Notes
In order to ground the problem, we compute the solution by analytically integrating and then differentiating. 
Just from looking at the graph we can see that if t is negative we integrate over no mass.
If t is between 0 and 1, the value of the function is 1 for distance t, so the integral is t. 
and if t is greater than 1, then the value of the integral is 1.

Computing the derivative with respect to t is easy. 
We just compute the derivative for each part of the piecewise function (*). 
The derivative with respect to t of (*)0 is 0, of (*)t is 1, and of (*)1 is 0. 
Notice that the function is 1 in the range 0 to 1 and 0 otherwise. 
(*) We may more compactly express this with our bracket notation.  
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Naïve autodiff of integrals with derivatives

DISCRETIZE DIFFERENTIATE

Presenter
Presentation Notes
In practice, we cannot compute integrals analytically. 
As a result, it is common to use numerical techniques such as quadrature or Monte Carlo estimation. 

Thus, we first (*) discretize the integral at a number of points and then (*) differentiate each of the samples. 

The derivative is 0. Why? Because the function is constant for all sample points. 

Unfortunately, this answer is (*) incorrect.

While in general, autodiff is correct almost everywhere, this implementation does not encode the semantics of the integral.
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Correct derivatives of integrals with 
discontinuities 

DIFFERENTIATE

Presenter
Presentation Notes
Instead, we will now compute the derivative without discretizing.

The derivative of the step function is 0 everywhere except t where it is infinity, as represented by delta of t-x.

-----
Remember that derivative of discontinuity is dirac.
We’ll figure out how to actually evaluate this later.



CVPR 2021 TutorialPhysics-Based Differentiable Rendering

Integrals with discontinuities break auto-diff

Presenter
Presentation Notes
Taken together, (*) discretizing before you (*) differentiate produces the (*) incorrect result, but (*) just differentiating produces the correct answer.
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The need for an integral primitive

Add integral primitive

Presenter
Presentation Notes
Let’s quickly look at this in code. 

(*) Discretizing involves iterating over the variable of integration and incrementing whenever x < t.

(*)The derivative just applies to the body of the conditional, so the answer is 0. 

(*) It is necessary to have an integral primitive in order to write the code for the initial expression, 

(*) and now, because we can’t turn it into a discrete sum, we need an integral primitive in the derivative too.

--------
Todo: fix animations.
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Discontinuities now need a delta operation

Add a delta operator

Not a well-defined 
operation

Presenter
Presentation Notes
But the catch is that, to handle discontinuities, we need a (*) Dirac delta operator
Unlike other typical operators, the Dirac delta is really not (*) a well-defined function, it’s literally infinity at a point. 
That is just one of many reasons that make it intractable to allow them as operations in programs.
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Recap: Differentiate first, then discretize

elim

Presenter
Presentation Notes
And so, our process has a second step that eliminates delta terms to produce a new delta-free expression, that we can then evaluate properly. Note here, that unlike traditional auto-diff, this approach gets the correct answer.
But wait, how did we do this?


---------------------------------------------
To do a quick recap, we first compute the derivative, introducing a delta term, and then eliminate the delta, (*) producing the correct answer.

Now, all of this has been on a toy example. 
We’re now going to scale up to general expressions by representing these transformations in a new language called, Teg.




CVPR 2021 TutorialPhysics-Based Differentiable Rendering

Eliminating deltas with the Sifting property

Single variable of integration

Presenter
Presentation Notes
For this, we use the Sifting property, which is essentially just integral convolution, but for the Dirac delta.

The catch (*) here is that it only applies to deltas containing a single variable of integration. (*) That is, it’s exactly aligned with the axis of integration
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Pass 2: Delta Normalization

Not in normal form

Presenter
Presentation Notes
But in practical applications, that’s not really true, what if we (*) had a program that described a circular discontinuity? Maybe something like this. (*) Formally, we say that this discontinuity is not in _normal_ form.

In that scenario, our system identifies and applies appropriate changes of variables to the integrals.
(*)
In this example, we would first apply a polar coordinate transform.

----------------------
In the second pass, (*) Teg reparameterizes the (*) delta expression (*) so it contains a single variable of integration. In this example, Teg (*) first converts (*) to polar coordinates. 
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Pass 2: Delta Normalization

Still not in normal form

Presenter
Presentation Notes
But the new expression still isn’t in (*) normal form. So, (*)we do (*) another reparameterization from 2r - t to r'.
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Pass 2: Delta Normalization

Final coordinates are in normal form!

Presenter
Presentation Notes
Which now (*) results in an expression in normal form  (*) – with a single variable of integration in the delta. 

But we still need to covert the rest of the program to these coordinates.
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Pass 2: Delta Normalization

Presenter
Presentation Notes
The process of performing the first (*) and second (*) change of coordinates is identical. For simplicity, we focus on the second.




CVPR 2021 TutorialPhysics-Based Differentiable Rendering

Pass 2: Delta Normalization

Presenter
Presentation Notes
Teg applies the change of coordinates to the bounds of integration and the delta (*)
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Pass 2: Delta Normalization

Inverse

Presenter
Presentation Notes
It then substitutes the old variables for the new variables (*) using the inverse of the condition. 
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Pass 2: Delta Normalization

Derivative

Presenter
Presentation Notes
And finally, Teg adds the (*) Jacobian term to account for the change of variables.

Note that we use a lot of these changes of variables 

At this point, our delta is in a single variable of integration, and we can use the Sifting property to eliminate it.
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All passes together

……… 1. Normalize
expression

2. Change-of-coordinates

3. Annihilate (Sifting)

Delta-free!

………

Presenter
Presentation Notes
Taken together, these passes describe a method to differentiate general integrals with discontinuities. 

Our process first breaks (*) down complex expressions into one piece per delta term. And this is possible because differentiation is a linear operator.
(*) Each term is then reparameterized to bring it to a normal form, (*) and then subsequently eliminated via Sifting.
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Applications

Presenter
Presentation Notes
But what is it useful for?

As I noted before, nearly every domain in graphics contains some form of integral estimation. Our system automates the challenge of differentiation, and provides an opportunity to revisit applications that are difficult to differentiate by hand. 
We’re now going to show a few concrete applications that use our compiler.
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Application: Image Style Filters 

Target image Triangulated image

rasterize(t)

Presenter
Presentation Notes
Our first application is image stylization, which is particularly relevant (*) here since it can be solved by differentiating a rasterizer, and then minimizing a loss function.
Note that in order for this to work properly we must account for the delta terms in the derivative.
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Ignoring    -terms produces 0 gradient

Target Image Optimize with
Ours

Optimize with
Traditional Auto-diff

No gradients account for 
discontinuities

Presenter
Presentation Notes
Starting from the same initialization, we optimize for a triangulated image using the gradients from Teg and compare against traditional auto-diff.
It turns out that not accounting for the delta terms in this program, (*) leads to a failed optimization. In fact, there is no gradient whatsoever, because traditional auto-diff only differentiates and the color is constant in the triangle.

-------
Starting from the same initialization, we optimize for a triangulated image. 


Using Teg creates a visually pleasing result, while traditional autodiff fails to optimize.
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Thresholded noise shaders

Perlin noise map

Threshold
… * [noise > t] * …

Bozo’s Donut
(Perlin 1985)

Thresholded noise
(Discontinuous)

Inverse problem:
Optimize noise to fit a target pattern

Presenter
Presentation Notes
We now turn to a new application in noise-based shaders, which contain more complex discontinuities.
(*) 

The original Perlin noise paper proposed thresholding noise shaders as a way to design interesting patterns. But since then this method has seen widespread use in procedural modelling, which means differentiating this type of shader can enable exciting inverse design problems, as well as enhance existing differentiable renderers.


-----
(To be able to differentiate discontinuous shaders is of particular interest since it enhances existing differentiable renderers as well as enable new inverse design problems.)



CVPR 2021 TutorialPhysics-Based Differentiable Rendering

Inverse shader design using our approach

Initial random 
noiseGuide image Optimized with
Ours

Presenter
Presentation Notes
We apply our differentiation approach to a design problem where we optimize random noise to fit a target image (*)

As we show here, we can successfully solve for our design objective because our derivatives correctly account for the thresholding. But what happens if we don’t?
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Ours Without deltas

Ignoring delta terms produces 
incorrect results!

Guide image

Boundaries have no gradient
(only colors)Optimizes for boundaries!

Presenter
Presentation Notes

Well, like our image processing example, ignoring those terms results in different, and visibility sub-optimal solutions. 
(*) We stress that it is important for shaders to account for their boundary terms, because otherwise, your derivatives can have the wrong sign and cause your loss to diverge.
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Application: Animation with hard contact

v1

v2
v3

Constant time-steps

Ill-defined derivative

A

B

Presenter
Presentation Notes
For our last example, we try to animate a bouncing ball between points A and B.
We aim to animate a bouncing ball with hard contact at the floor.

Usually in graphics, we simulate this with a constant time step ODE.
But, the ball can penetrate under the floor, resulting in unstable derivatives.
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Spacetime constraints (1988)

Inverse physical simulation with space-time constraints

t₁
t₂

t₃ t₄

t₅

Positions x

Time-stamps t

x1

x2
x3 x4

x5

Fixed to surface

Presenter
Presentation Notes
Instead, if you are trying to do differentiable hard contact,
we suggest looking at the space-time constraints formulation,

where we parameterize the trajectory by its positions and time-stamps,

and optimize for the Lagrangian integral.

This allows us to handle hard contact, 
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Physical simulation with space-time constraints

V1 V2

Discontinuous 
velocity

Presenter
Presentation Notes
However, the velocity term in this integral is now discontinuous, which is where we need our differentiation approach.
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Comparison with ignoring boundaries

Optimized with Traditional Auto-diff
(Physically incorrect)

Optimized with Ours
(Physically correct)

Presenter
Presentation Notes
And we show here that not handling this discontinuity properly leads to
a physically incorrect trajectory which spontaneously changes direction. 
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Limitations & Future Directions

Diffeomorphisms

Linear
Quadratic

User-defined!

Scalability

Scalar variables
(no indexing)

1 2
4 5

Expression lang
(no looping)

Modularity

Requires global 
transforms

…

Code duplication

Presenter
Presentation Notes
This approach we have described is fairly early-stage, so we want to emphasize a few limitations which are also potential future directions.

(*) A key requirement for discontinuities in our program is that they must be reducible to a single variable.
(*) Our system is able to do this automatically for certain linear and quadratic expressions, and we also allow the user to specify their own changes of coordinates while our system handles the necessary substitutions and Jacobian adjustments.
However, it is critical that these expressions are diffeomorphisms and this limits the expressions to those with a known inverse function.

(*)
Additionally, our semantics currently don’t support indexing or tensors, (*). And, we also assume that the programs are in an expression language – they are loop free.
	
(*)
Our transformation processes are also global. Every delta term is transformed in tandem with its associated integral, which means the two pieces cannot be differentiated separately as modules. (*) And this problem gets worse when there are several delta terms, since expressions get duplicated for each delta term. 

There is important future work in solving these issues in order to scale to large applications.
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Systematically handling discontinuities: A Summary

Graphics programs

ray_trace(t)rasterize(t)

simulate(t)

Presenter
Presentation Notes
So in _summary_ (*) we’ve first looked at a general problem in differentiating graphics programs.
We then (*) proposed a new approach using (*) Dirac deltas to account for discontinuities. This (*) avoids the issue with traditional auto-diff which discretizes first and lose this information. 
(*) And because deltas cannot be evaluated meaningfully as a primitive, we show that we then eliminate these using changes of coordinates followed by sifting.
We hope that this approach provides new insights for applications previously thought to be too difficult to differentiate by hand.
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Mitsuba 2
• A general-purpose differentiable renderer developed by Jakob et al.


• Strengths

• Feature-rich (e.g., supports hyper-spectral and polarized rendering)

• Efficient at handling many (e.g., millions) of parameters


• Weaknesses

• Currently offers limited support for differentiation 

with respect to geometry
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PSDR-CUDA
• A GPU-based general-purpose differentiable renderer


• Built upon the same numerical backend (i.e., Enoki) as Mitsuba 2

• Much lighter weighted 

• Python bindings via pybind11


• Implements path-space differentiable path tracing [Zhang et al. 2020, 2021]

• Fast and unbiased geometric gradients

Original image Derivative image  
(w.r.t. rotation of the object)

Original image Derivative image  
(w.r.t. rotation of the env. map)

Try PSDR-CUDA!
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Differentiating Image RMSE using PSDR-CUDA
import enoki as ek

from enoki.cuda_autodiff import Float32 as FloatD, Vector3f as Vector3fD, Matrix4f as Matrix4fD

import psdr_cuda


# Load the scene without configuring it

scene = psdr_cuda.Scene()

scene.load_file('scene.xml', auto_configure=False)


# Compute gradient with respect to mesh vertex positions

ek.set_requires_gradient(scene.param_map["Mesh[0]"].vertex_positions)


# Configure the scene

scene.configure()


# Start rendering!

image = psdr_cuda.DirectIntegrator().renderD(scene, sensor_id=0)


# Compute the RMSE image loss

loss = ek.sqrt(ek.hmean(ek.squared_norm(target_image - image)))


# Reverse-mode autodiff

ek.backward(loss)


# Obtain the gradient of the loss

grad = ek.gradient(scene.param_map["Mesh[0]"].vertex_positions)



Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Application: Shape and Material Reconstruction

To appear at Eurographics Symposium on Rendering (EGSR) 2021

Joint work with Fujun Luan, Kavita Bala, and Zhao Dong



CVPR 2021 TutorialPhysics-Based Differentiable Rendering

Application: Shape and Material Reconstruction
• We solve an analysis-by-synthesis problem by jointly optimizing:


• Object shape (i.e., positions of all mesh vertices)

• Object reflectance (as diffuse/specular albedo and roughness maps)


• Losses:

• Rendering loss (computed & differentiated using PSDR-CUDA)


• Regularization losses (e.g., mesh Laplacian, map smoothness)


• For improved robustness:

• Coarse-to-fine scheme

• When updating vertex positions, use elTopo [Brochu et al. 2009] to avoid self-intersections

> 1M parameters!
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Application: Shape and Material Reconstruction

Initial (Kinect Fusion) TargetOptimized (using gradients generated by PSDR-CUDA)

Rendering Abs. error

Low

High

Joint optimization of object shape and spatially varying reflectance (100 views used, 2 shown)
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Gradient Accuracy Matters!
Inverse-rendering results with identical optimization settings
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Reconstruction Results of Real Objects

(No normal mapping is used, all geometric details emerge from actual mesh geometries.)
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Reconstruction Results of Real Objects

Object insertion in

augmented reality (AR)

Re-rendering in 
novel 3D scene
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Inverse-Rendering Performance
• Each inverse-rendering optimization takes 15—100 minutes


• Inverse-rendering performance  differentiable-rendering performance

• Differentiable rendering only accounts for <4% of total optimization time


• Geometric processing (e.g., collision detection) takes up to 70%


• We need much better geometric processing systems!

• e.g., elTopo [Brochu et al. 2009] is CPU-based and single-threaded

≠
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Inverse scattering [Gkioulekas et al. 2013]

mustard

whole milk

shampoo

hand cream

coffee

wine

robitussin

olive oil curacao

mixed soap

milk soap

liquid clay

reduced milk
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Acquisition setup

Invert using 
differentiable 

rendering
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Synthetic renderings

mixed soap

glycerine soap olive oil curacao whole milk
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Inverse transport networks [Che et al. 2020]
• Integrate physics-based rendering into machine learning pipeline
• Predict scattering parameters from images

TrainingTesting

• Utilize image loss provided by a volume path tracer to regularize training
• Use the trained encoder to perform inverse scattering during testing
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Examples

Groundtruth

Inverse transport network
parameter loss:  0.60x
appearance loss: 0.40x
novel appearance loss: 0.42x

Baseline
parameter loss:  1x
appearance loss: 1x
novel appearance loss: 1x

0 %

50 %
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simulated camera 
measurements

reconstructed 
cloud volume

slice through 
the cloud

camera thick smoke cloud

Optical tomography [Gkioulekas et al. 2015]
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Active area of research

woven fabrics
[Khungurn et al. 2015, 

Zhao et al. 2016]

cloud tomography
[Levis et al. 2015, 

2017, 2020]

industrial dispersions
[Gkioulekas et al. 2013]

computed tomography
[Geva et al. 2018]

efficient algorithms
[Nimier-David et al. 2019, 2020]

3D printing
[Elek et al. 2019, 

Nindel et al. 2021]
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Non-line-of-sight (NLOS) imaging

occluder

NLOS 
objectsource & sensor

in
te

ns
ity

 (#
 p

ho
to

ns
)

time 𝜏𝜏
𝑥𝑥

𝑦𝑦

𝜏𝜏

Time-of-flight measurements

LOS 
signal

NLOS 
signal
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single-photon avalanche 
photodiode (SPAD)

picosecond 
laser

galvo 
mirror

SPAD-based lidar

galvo 
mirror
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NLOS shape optimization [Tsai et al. 2019]

visible surface

source 
and 

sensor
NLOS 
scene

Simulated time-of-flight data 100,000 vertices
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1 m x 1 m
64 x 64 scan points

1 m
wall

NLOS shape optimization [Tsai et al. 2019]

scene initial mesh 
[O’Toole et al. 2018]

optimized mesh

Measured time-of-flight data
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Reflectometry from interreflections [Shem-Tov et al. 2020]

- Many measurements (2D scan of light & camera)
+ Intensities map directly to BRDF entries

material sample 𝑓𝑓 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝜊𝜊
𝜔𝜔𝜊𝜊

𝜔𝜔𝑖𝑖

Higher-order 
bounces

material sample

- Non-linear analysis-by-synthesis optimization
+ Fewer measurements (single image)

Direct illumination measurements Global illumination measurements

𝜔𝜔𝜊𝜊

𝜔𝜔𝑖𝑖

𝑓𝑓 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝜊𝜊

Solvable using differentiable rendering
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Single-image dense BRDF sampling

Single-bounce paths Two-bounce paths All-bounce paths
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Results on MERL dataset

Groundtruth

Optimized 
shape

~ 11.2x 
better 

parameter 
recovery

~ 6.3x 
better 

parameter 
recovery
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• Reduce number of measurements required for inverse rendering
• We should rethink “optimal” acquisition systems

• Resolve ambiguities between different types of parameters
• We should revisit theory problems on uniqueness results

Global illumination can help…

Shape from interreflections 
[Nayar et al. 1990, Marr Prize] 

Interreflections resolve the GBR ambiguity 
[Chandraker et al. 2005] 

< < < ?
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The first physically-based differentiable renderer!

And also among the most widely used:

Introduced with the first 
unbiased differentiable 

rendering algorithm
[Li. 2018]

Presenter
Presentation Notes
Redner is the framework first introduced by the edge-sampling paper, 
It’s one of the most popular differentiable renderers on Github right now.

It’s essentially a path tracer that implements edge sampling algorithm, but notable uses a BVH-style hierarchy for edges to accelerate edge-sampling.
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Redner is built from the ground up for ML applications

redner
.apply()

.backward()

.apply()

.backward()

Loss

(“Eager” mode only)

Presenter
Presentation Notes
One key thing I want to emphasize is that it is built from the ground up to be used as a tool for ML and computer vision applications, and as such it can slot right into a neural model that you might be working with. It slots in as a layer, takes as input shapes, light positions, camera pose, etcetera, and produces a physically realistic image.

You can use this as a differentiable layer in both pytorch or tensorflow, and backpropagate using unbiased gradients generated from redner.

Shuang and Ioannis have already gone into the details of a physically-based renderer, and redner is based on this model. However, PSDR uses the path space, while redner is based on edge-sampling.
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Redner supports deferred rendering (if realistic rendering is not the goal)

redner

position

normals

albedo
(say we can just use one bounce lighting)

Presenter
Presentation Notes
Some new features of redner:

redner offers G-buffer rendering for various different buffers like positions, normal, albedo. Your use case might also require these in addition to the realistic image for things like, maybe regularization..
Note that these G-buffers are very versatile and can be used for post-process lighting like SoftRas or Pytorch3D, but with accurate gradients through edge-sampling. 
(Render provides a handy package for popular non-physical lights and materials.)
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Redner now contains two styles of differentiable rendering

pyredner.integrators.EdgeSamplingIntegrator() pyredner.integrators.WarpFieldIntegrator()

Edge-sampling [Li et al. 2018] Warped-area sampling [Bangaru et al. 2020]

Presenter
Presentation Notes
In the last update, Redner’s experimental branch now contains both edge sampling and the warp field method, so you can get the benefits of both!
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Swap freely between two methods 

Edge-samplingGround truth Warped-areaUse edge-sampling for primary 
visibility

Use WAS for higher-order 
effects

pyredner.integrators.EdgeSamplingIntegrator() pyredner.integrators.WarpFieldIntegrator()OR

Presenter
Presentation Notes
We provide an easy way to swap between the two methods so you can choose which one to use based on the current requirement. As a general rule of thumb, (*) edge-sampling works great for primary visibility, while (*) warped sampling works better for higher-order illumination.
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Use redner anywhere in your pipeline

Optimize/Train morphable models

Find adversarial examples

Optimize for fine-grained pose

redner

redner Fish?

redner

Presenter
Presentation Notes
You can use render as a layer anywhere in your system!
For instance, (*) train the parameters of a morphable model to match a particular target.
Or, (*) you can use redner at the input to find adversarial examples for a classifier network.
Alternatively, (*) you can use it to optimize for fine-grained pose, by using the output from a different method as initialization.
And you can do so much more with a differentiable rendering layer,…
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Use Redner today!

$pip install redner

$pip install redner-gpu

Or on Google Colab immediately:

Sample notebook

Start using on your system:

Github codebase 

Presenter
Presentation Notes
So try it out today at the following links. Redner is GPU accelerated through NVIDIA OptiX, is available on all three platforms, and you can install it through pip!

Alternatively, you can even run it on the cloud, the bottom right links to an ipython notebook with a live example of optimizing a morphable model. You can even try it out on your phone if you want to.
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Take-Home Messages
• Great progress has been made in physics-based differentiable rendering


• Now capable of handling global illumination, arbitrary types of camera (e.g., transient), and global 
scene parameters (e.g., object geometry) with decent efficiency


• Can be applied to solve many general inverse problems


• Ray tracing is no longer slow

• Many efficient systems are being actively developed (e.g., Redner, PSDR-CUDA, Mitsuba 2, Teg)


• And differentiable rendering is usually not the performance bottleneck


• Gradient accuracy matters!

• Approximated gradients can yield reduced result quality


• Discontinuities always exist (due to visibility) and need to be properly handled

• Auto-diffing a path tracer may not always work
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Thank you!

Funding agencies Tutorial website

https://diff-render.org

https://diff-render.org
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