CVPR 2021 Tutorial

Physics-Based
Rendering

Speakers

Shuang Zhao loannis Gkioulekas Sai Bangaru
Assistant Professor Assistant Professor Ph.D. student
University of California, Irvine Carnegie Mellon University Massachusetts Institute of Technology

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Talk Qutline

® |[ntroduction

® Differentiable rendering theory and algorithms

® Differentiable rendering systems and applications

o Q&A

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

CVPR 2021 Tutorial

buliapuay ajgenualayiq paseg-soisiyd

What is Differentiable Rendering?

® Computing derivative images (with respect to various parameters)

0.0

-0.003

Original Derivative with respect to sun location

Forward-rendering result Differentiable-rendering result

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Why Use Differentiable Rendering?

® Solving inverse-rendering problems

® i.e,inferring scene parameters based on images of the scene

® |ntegrating forward rendering into probabilistic inference and machine
learning pipelines

® c.g., backpropagating losses during training

® Numerous applications in computer vision, computer graphics, computational
imaging, VR/AR, ...

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Forward and Inverse Rendering

Scene parameters Rendered image
- E— B B = REA

Forward rendering |

Inverse rendering

D

0=%"'(I?

Geometry, materials, lighting, ...

Scene: "bed classic" from Jiraniano

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Ray Iracing
® A heavily abused term in graphics and vision

® \We use ray tracing to mean ray-surface intersection computations

e Applicable to both explicit (e.g., mesh) and implicit (e.g., SDF) surfaces

® Basic building block for most (if not all) physics-based rendering algorithms

® c.g., path tracing, bidirectional path tracing, ...

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Physics-Based Forward Rendering

® Relies heavily on Monte Carlo integration

® Can capture complex light-transport eftects

® Soft shadows, interreflection, subsurface scattering, ...

[Gkioulekas et al. 201 3]

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Physics-Based Inverse Rendering

Scene parameters Rendered image

Inverse rendering

®|nverting physics-based

forward rendering

®Crucial to many applications

Geometry, materials, lighting, ...

Scene: "bed classic" from Jiraniano

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Joint optimization of object shape and spatially varying reflectance (our recent work)

(A) CAPTURE (B) PHOTOS (c) INIT. MODEL (D) OPT. MODEL (E) RENDERING

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Computational Fabrication

Determining the material configuration for individual voxels in full-color inkjet 3D printing

[Nindel et al. 2021]

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Physics-Based Learning

® |ntegrating physics-based rendering into machine learning and
probabilistic inference pipelines

® |nverse subsurface scattering [Che et al. 2020]

Testing Training
Ot
g
1mage encoder parameters differentiable renderer Image

e Utilizing image loss provided by a volume path tracer to regularize training

® Use the trained encoder to solve inverse problems during testing

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Why Is Physics-Based Differentiable Rendering Hard?

® Need to differentiate solutions of integral equations (or path integrals)

e €.9. the rendering equation: L(x,w_) = [f(x, 0,0, Lx »,)dw; + L.(x,®,)
S2
® The relation between such solutions and scene parameters can be highly complex

® Requires handling very large gradient matrices (e.g., with 10'% or more entries)

® Can be tricky to implement correctly

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Handling Many Parameters

® Forward-rendering function: I = Z£(0)

® 0 € R"” (n: number of parameters)

® | € R" (m: number of pixels)

| - dZ y
e Gradient matrix: —(x) € R"*"
dé@
® Challenges:
® m and n can both be large (~10°) .

o (dA#/d0) can involve 10'? entries

® Reverse-mode automatic differentiation can
easily run out of memory

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Precautions Must Be [aken

® Precautions must be taken to ensure correctness

® E.g., applying automatic differentiation to a path tracer does not always work

® Should the PDF (used by a Monte Carlo estimator) be differentiated?

® Can go either way...
(More on this later.)

® Discontinuities

® Differentiating only the integrand is insufficient
(More on this later.)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Why Not Simply Use Fini

Finite difference:

(0) =

te Differences?

66’1- 2€

Potential problems:

e High bias (large €), rounding error (small €)

® Need to correlate Monte Carlo samples

® Scales poorly with the number of parameters

Physics-Based Differentiable Rendering

CVPR 2021 Tutorial

desired accuracy

1012 108 10~4

[Wikipedia]

Global Illumination

® Can be simulated with modern differentiable renderers

® Required when solving many inverse-rendering problems

visible surface

I _
O o~
O —
- -)
) AN
s _
@) ®
n +
¢ G
G ke
£ | N—
— source
and
Sensor
Computational fabrication Non-line-of-sight imaging

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

http://theawesomer.com

Pixel-Level Antialiasing Matters

Binary-valued A Continuous-valued

VAN

No antialiasing Pertect antialiasing

| 1 i
| Pixel value = J I(x)dx |
| | 1

l'

1
|
l
|
w |
\ J

o _ e

—————— 2 — = —

More information, more differentiable!

Pixel value = I(x_)

Can make inverse-rendering
optimizations more robust

One pixel

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Geometric Representations

Explicit Implicit

(e.g., polygonal meshes) (e.g., signed distance functions)

® Ray-tracing-based forward rendering is agnostic to geometric representations

® The situation is more complex for differentiable rendering

® Due tothe need to handle discontinuities (will discuss in details later)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Why you should use ray-tracing-hased
differentiable rendering

CVPR 2021 Tutorial

Ray Tracing vs. Rasterization

* We believe that ray tracing is the way to go for future differentiable renderers

* Ray-tracing-based methods are not much slower than rasterization

* Hardware-accelerated ray tracing has been improving rapidly (e.g., Nvidia RTX)
* Visibility checks and intersections are typically not the performance bottleneck

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

23823 vertices, 44702 faces

1024x1024 at 2 spp (Titan RTX)
render time:

* psdr-cuda (ray-tracing-based)*:
2.8 msec

* PyTorch3D (soft rasterizer):
52.5 msec

Other computations (loss

backpropagation, mesh

evolution and remeshing):
~ 1000 msec

Initial Target
*Luan et al., EGSR 2021 (to appear)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Low High

23823 vertices, 44702 faces H A

Initial Optimized (psdr-cuda) Absolute error

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Ray Tracing vs. Rasterization

* We believe that ray racing is the way to go for future differentiable renderers

* Ray-tracing-based methods are not much slower than rasterization

* Hardware-accelerated ray tracing has been improving rapidly (e.g., Nvidia RTX)
* Visibility checks and intersections are typically not the performance bottleneck

* Ray-tracing-based methods can compute correct (i.e., unbiased) gradients
* Correct gradients matter in optimization!

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Low High

Optimization results after 5000 iterations (w/ identical settings)

Optimized (psdr-cuda) Target Optimized (PyTorch3D)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

* We believe that ray racing is the way to go for future renderers

* Ray-tracing-based methods are not much slower than rasterization
Second part of

* Hardware-accelerated ray tracing has been improving rapidly (e.g., Nvidia RTX) _ _
this tutorial

* Visibility checks and intersections are typically not the performance bottleneck

* Ray-tracing-based methods can compute correct (i.e., unbiased) gradients

* Correct gradients matter in optimization!

* Ray-tracing-based methods can handle complex light-transport effects

* Soft shadows, environmental illumination
* Inter-reflections, radiative transfer (e.g., subsurface scattering), caustics

* Ray-tracing-based methods can provide gradients in general scenes
* Different shape representations, including point clouds, explicit (e.g., meshes), implicit (e.g., neural SDFs)
* Different types of cameras (e.g., intensity, lightfield, polarization, time-of-flight, hyperspectral, ...)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

CVPR 2021 Tutorial

Inverse rendering (a.k.a. analysis by synthesis)

7 Illumination

oA

. scattering

. 3D shape and pose

T camera
pose

Physics-Based Differentiable Rendering

Analysis-by-synthesis optimization:

/

min loss l render
scene
unknowns T

scene)]
unknowns T

\

,/

Stochastic gradient descent (e.g., Adam):

(EWTTIRT
Initialize m « m,

while (not converged)

. update m «m+ 17 - =

~

dloss ()

CVPR 2021 Tutorial

Differentiable
rendering

Why we need good initializations

* Analysis-by-synthesis objectives are highly non-convex, non-linear

* Multiple local minima

* Ambiguities exist between different parameters

* Multiple global minima

.*N*.

INPUT IMAGE MIRROR BRDF ILLUMINATION

@ wew

INPUT IMAGE ACTUAL BRDF MANY PROBABLE ILLUMINATIONS

Ambiguities between shape and lighting
[Xiong et al. 2015]

Ambiguities between BRDF and lighting Ambiguities between scattering
[Romeiro and Zickler 2010] parameters [Zhao et al. 2014]

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Inverse rendering (a.k.a. analysis by synthesis)

Analysis by-synthesis optimization:

\
SCENE
o min El render K)]
Learned initializations help: scene un nowns 1

_ o unknownsn
« avoid local minima /

* accelerate convergence

Stochastic gradient descent (e.g., Adam):

o N\

while (not converged)

Neural network

dloss(m) | itterentiable
update mr «m+1n - .
_ drt rendering

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Why we need discriminative loss functions

* Well-designed loss functions can help reduce ambiguities

* Perceptual losses can help emphasize design aspects that matter

* Differentiable rendering can be combined with any loss function that can be
backpropagated through

Style Target €¢,relu1_2 gqb,relu2_2 gqb,reluB_B €¢,relu4_3

style style style style
e A / ! A4
fw S i ittt i ity g
I

Input 'Image Transform Net :
mage T20e Transtorm Net 3
Eqb,reluS_B
Content Target feat

VGG-based perceptual loss [Johnson et al. 2016]

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Inverse rendering (a.k.a. analysis by synthesis)

Analysis by-synthesis optimization:

\
scene
min E render
scene unknowns T
unknowns T

7 Illumination

/
| . Stochastic gradient descent (e.g., Adam):
. scattering - ~
while (not converged)
e, ™ 3D shape and pose update 70 < 1T + 17 dloss(m)| | Ulitterentiable

pose N drr rendering

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

High sighal-to-noise ratio is critical

* The extent to which we can improve upon an initialization strongly depends on the
signal-to-noise ratio of our measurements

* We need reliable camera models (noise, aberrations, other non-idealities)

simulated
data

img(c,S)

ambient light
direct & indirect light transport
projector optical transfer function
camera optical transfer functio

-

' leht senctation || || pixel responses
measured e 4 e J
e - . A] [
t |
scene initial mesh optimized mesh B B
Non-line-of-sight imaging [Tsai et al. 2019] Optical gradient descent [Chen et al. 2020]

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

CVPR 2021 Tutorial

Reminder from calculus

Differentiation under the integral sign
Also known as the Leibniz integral rule

b (1)

d
— f(x,m)dx
dm a (1)

Account for changes in
iIntegration limits

Account for discontinuities of
integrand that depend on «

Physics-Based Differentiable Rendering

? b d

— e f (x 7_[) dx Move derivative

a(m) A7

+ f(b(n),) — fla(m);)

+ E(ﬂcl(n)) - flei(m)*,m)

CVPR 2021 Tutorial

inside integral

db () da(n)
dm

dCl (ﬂ)

A simple example

Flx,m) = {(1) if x < 2m

if x = 2m
d 41T 2TT d 41T d
— f(x n)dx — —0dx + —1dx Move derivative
dm J, ’ Il o dm ~dm inside integral
Account for changes in d(4m) dO
Integration limits + 1 drr — 0 E

d(2m)
dm

Account for discontinuities of _|_ (0 _ 1)
iIntegrand that depend on

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Leibniz integral rule

Differentiation under the integral sign
Also known as the Leibniz integral rule

b (1)

d
— f(x,m)dx
dm a (1)

Account for changes in
iIntegration limits

Account for discontinuities of
integrand that depend on «

Physics-Based Differentiable Rendering

Interior integral
b(m) 4

— e f (x 7T) dx Move derivative

a (1) am

Boundary terms

inside integral

() da(ﬂ)

+ fb(m),m) — fla(m);)

+ E(ﬂcl(n) ™) — flei(m)*,m)

CVPR 2021 Tutorial

dCl (ﬂ)

Simplified Leibniz integral rule

Differentiation under the integral sign

Also known as the Leibniz integral rule o
Interior integral

d r° b d o
£[a f(x, T)dx = [a]:(x’) dx Move derivative

inside integral
a

Differentiation wrt simplifies to just moving derivative inside integral when:
* Integration limits are independent of .
* |ntegrand discontinuities are independent of .

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Reynolds transport theorem

Interior integral Boundary integral

d ?
— [flmdAk) = [J sx D aae) 4+ [gumai@
Q(1) It 0Q(1)

dﬂ .Q.(TL')
Boundary domain
Reynolds transport theorem [1903] 1

Generalization of the Leibniz rule

Q discontinuity points U boundary of domain ()
& f th
Ao (if they depend on)
\
O
66(*
OO
\OO
f=0 f=1
discontinuity points
T

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Radiance from x:

Reflectance Shading wrt
(BRDF) normal n

— . fr(a)i, (1)0) Li((l)i) (n - wi) do(w;)

Unit hemisphere

Monte Carlo rendering:

« Sample random directions w; from PDF p(w;)
* Form estimator

N fr(wig’ wo) Li(wig) (n - (Uf)
= 2 p(w;)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Differential radiance from x:

dl d

dr B drmr H2 fr(wi, wo) Li(w;) (n - w;) do(w;)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Differential radiance from x:

d_i{[- f]]—]lZ %{fr(wir wo) Li(wi) (7’1 ' wi)} da(wi)

Just move derivative inside integral

Monte Carlo differentiable rendering:

« Sample random directions w; from PDF p(w;)

. Just differentiate numerator
* Form estimator . ngurn et al. 2015, Gkioulekas et al. 2015]

1t. local parameters

. BROF parameters 3, 3 - U (@F,@5) Li(@f) (-)
S

* Shading normal o~
e illumination brightness dm

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

p(wf)

Differential radiance from x:

d_7IT B f]}]}z %{fr(wi» Wo, M) Li(w)(n - w;)}do(w;)

Just move derivative inside integral

Monte Carlo estimation:

« Sample random directions w; from PDF p(w;,)

e Form estimator Differentiate entire contribution
1t. local parameters [Zeltner et al. 2021]
 BRDF parameters S S S
drm sdm p(wi, m)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Differential radiance from x:

dl B d I d
dr ~ dm TH2 fr(wi, wy) Li(w;) (n - w;) do(w;)

— mEmm-'—- bt (1 - ;) } do(w;)

Need to use full Reynolds transport theorem

1t. global parameters

* shape and pose of
different scene elements
(camera, sources, objects)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

- ¢ High

1. Size of the emitter

_ | N | Integrand Discontinuous points
[= 2 é‘(wu wo)l;lﬁwl)(n le)dO-(a)l) f(a)l) (ﬂ'dependent)
f(w;)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

High

! —f °/ do + f dl
dT[—]HIZdT[d aH_HZg

(S'QL?QZS'?Q??QE‘C; Integrand Discontinuous points

barameters) f(w;) (T-dependent)
[Ramamoorthi et al. 2007, Li et al. 2019]

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Hemispherical integral Surface integral

Change of
variables

[= fly - x)G(x,y) dA(y)
L(1T)

Includes visibility, fall-off,

and foreshortening terms
Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Hemispherical integral Surface integral

Low Il High | s g

Change of
variables
discontinuous continuous
[= f f(w;) do(w;) I = fly - x) G(x,y) dA(y)
[HI 2 L(r)
constant domain evolving domain

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

. size of the emitter Low [High Discontinuities of f

dl d(f)
Differentiation> — = f do + f g dl
dmr [H2 dm o Hl2

Reynolds transport _
theorem |nterIOr

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

. Size of the emitter Low B High Boundary of £L(m)

\ /

A M

dI d(fG
| = fly - x)G(x,y)dA(y) Differentiation> — = f U6 dA + f g dl
L(T) dr L(7) dr 0L (1)
Reynolds transport .
theorem |nterIOr

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Boundary edge Sharp edge ‘ Silhouette edge | _

Boundary edge

Silhouette &
detection

¥ Silhouette
edge

Topology-driven Visibility-driven

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Significance of the boundary integral

Negative [N 7T 0 positive

Original image Derivative image Derivative image
w.r.t. vertical offset of w/o boundary integral
the area light and the cube

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Gradient Accuracy Matters

Inverse-rendering results with identical optimization settings

INIT. MESH SOFTRAS PyTorRCH3D MiTsuBA 2 NVDIFFRAST Luan et al. 2021 GROUND TRUTH

0.0053 0.0066

Relative err: 0% [

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

0.0023

1 30%

Sources of discontinuities

* We still need to account for visibility discontinuities when using smooth
closed surfaces (e.g., neural SDFs)

Silhouette edge '
: o e
e, N\
(/A S & detection

[Gargallo et al., ICCV 2007]

Visibility-driven

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

CVPR 2021 Tutorial

Background: Path Integral for Global Illumination

Measurement

Pivel value contribution

1= | f@ du@
Q)

Area-product
Path space measure

® |ntroduced by Veach [1997] and extended
by Pauly et al. [2000]

Light path x = (xg, x1, X5, X3)

® Can capture both surface reflection/refraction
and volumetric (i.e., subsurface) scattering

® Theoretical foundation of most modern
forward rendering techniques

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Background: Estimating Path Integrals

Measurement

Pivel value contribution

1= | f@ du@
Q)

Area-product
Path space measure

Monte Carlo estimator:

J(x)
() = —
px) Light path X = (xg, X1, X, X3)

Probability density

for sampling path X

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Differential Path Integral

Path-space difterentiable rendering [Zhang et al. 2020, 2021]

dd

We now derive 2Ix/ar in Eq. (25) using the recursive relations pro-
vided by Eqs. (21) and (24). Let

h(O) = [nN-nﬂ g(xn'; Xn' -2, xn'—l)] We(xN = xN—l)’ (52)

h(l) — Z n’=n+1 K(xn') V(xn’), (53)
Ahf:’)’)', p— h$10) Ag(x"';x"'-z’xn"l)/g(xn';xn'—z’xn’-l), (54)

for 0 < n < n” < N. We omit the dependencies of hf,o) h“) and

Ahfio'),, on Xn+1, . .., XN for notational convenience.
We now show that, for all 0 < n < N, it holds that

hn(xn; Xn-1) = [ynon b TIyeper dAGRw), (55)

and

Physics-Based Differentiable Rendering

Jx)du(x) | =

@) @)

f(®) du(®) +

0€2

g(x) du’'(x)

Interior integral Boundary integral

(s xn-1) = fyven | (") = B8RS | TN -y dAGEn)

+ S per [A Vo () de(x) 1 dA(xi), (56)

nf:’S’N
i#n
where the integral domain of the second term on the right-hand
side, which is omitted for notational clarity, is M(x) for each x;
with i # n’ and M,y (), which depends on x,_1, for x,.
It is easy to verify that Egs. (55) and (56) hold forn = N — 1. We
now show that, if they hold for some 0 < n < N, then it is also

the case for n — 1. Let g,,—1 = g(xp; xp-2,xXp—1) forall0 < n < N.

Then,

hp-1(xXp-1; Xp-2) = fM 9n-1 fMN‘ h(O) n,lg:n” dA(xp) dA(xp)
= fMN-nﬂ h(O)l ﬂ n=n dA(xp), (57)

and
hn-1(Xn-1; Xn-2)
= [yt [dn-1hn + gn-1(hn = hn x(xn) V(xn))]| dA(xn)
+ fm,. Agn-1 hn Vazp de(xn)
= [yonos fgn-1 k) +gnen [(") = m”m2 | TN dAGew)

+ 3 s [In-1 AR, Vo () de(x) T dA(xi)
n<i<N
i#n’

1, 40(xn) TTy ey dA(x)
h“’_’ '] MY, dA(xw)

+ng,,_ h(o)

= pnone [(h“”

+ I [AR Vart () de () I dAG). 69
i#n’

Thus, using mathematical induction, we know that Egs. (55) and
(56) hold for all0 < n < N.

(The tull derivation is quite involved...)

CVPR 2021 Tutorial

Notice that h(()o) = f and Ah(()gz, = Afy, where Af, follows the
definition in Eq. (28). Letting n = 0 in Eq. (56) yields
ho(x0) = /M~ [f(x) — f@) EN_ k() V(xg) | TIN ., dA(xp)

Tov=t] A (®) Vagg de(a)0<!_1 N dA(xi). (59)
i#n'

Lastly, based on the assumption that hy is continuous in xg, Eq. (25)
can be obtained by differentiating Eq. (23):

I = 2 [ho(xo) dA(x0)
= fM [Ao(x0) — ho(x0) x(x0) V(xo) | dA(x0)
+ fm ho(x0) Va7 (x0) de(x0) (60)
= Jo. [f®) = F(2) ZR_o k(xk) V(xk)] du()

+ TR0 Joy , Mk (@) Vg duy (2.

Differential Path Integral

Path-space difterentiable rendering [Zhang et al. 2020, 2021]

d .
— J f(®) du(®) =[JX) du(x) + [g(x) dp'(x)
do O O 0€2

Interior integral

Original
light path
Interior integral

® Defined on the ordinary path space €

e The integrand f can be obtained by differentiating

the ordinary measurement contribution function f

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Differential Path Integral

Path-space difterentiable rendering [Zhang et al. 2020, 2021]

d .
— J f(®) du(®) =I SX) du(x) + I g(x) dp'(x)
do O O 0€2

Boundary integral

Boundary
light path

Boundary integral

® Defined on the boundary path space 0<2
e Aboundary light path isthe same as an original one
except having exactly one boundary segment

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Differential Path Integral

Path-space difterentiable rendering [Zhang et al. 2020, 2021]

d :
(J J(%) dﬂ(X)) J J(x) du(x) + I g(x) du'(x)
do Q 0€2

Interior integral Boundary integral

Physics-based differentiable rendering generally requires estimating both integrals

o D|ﬁerent|at|ng f w.r.t. many parameters(mtenor)]

Challenges: —-n09—n—————— ——
® Handling discontinuities (boundary)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Differential Interior Path Integral

Path-space difterentiable rendering [Zhang et al. 2020, 2021]

d .
— J f(®) du(®) =[JX) du(x) + [g(x) dp'(x)
do \ Jq O o0

Interior integral

e Computing f requires differentiating f w.r.t. @
® This can be done via automatic differentiation, but ...

® \We have many (e.g., 10°) path integrals to evaluate (one per pixel)

® There can be many (e.g., 10°) parameters W

® Huge gradient matrices (e.g., with 10'? entries), not enough memory!

Specialized computational differentiation methods have

I

| been developed [Nimier-David et al. 2020, Vicini et al. 2021])

Physics-Based Differentiable Rendering Shuang Zhao

Differential Path Integral

Path-space difterentiable rendering [Zhang et al. 2020, 2021]

d :
(J J(%) dﬂ(X)) J J(x) du(x) + I g(x) du'(x)
do Q 0€2

Interior integral Boundary integral

Physics-based differentiable rendering generally requires estimating both integrals

o D|ﬁerent|at|ng f w.rt. many parameters(mtenor)
Challenges: ——— e ——
. ® Handhng d|scont|nu|t|es (boundary) ‘

—— e —— e e ——— = = — — e

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Recap: Significance of the Boundary Integral

Negative [N 0 positive

Original image Derivative image Derivative image

w.r.t. vertical offset of w/o boundary integral
the area light and the cube

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Handling Discontinuities

® Objective: estimating the integral over all boundary light paths (that are the same as
an original one except having exactly one boundary segment)

® (Solution 1) Monte Carlo edge sampling

® |ntroduced by Lietal. [2018]

® Also used by Zhang et al. [2019] Boundary
light path

To sample a boundary segment:
® Fix one endpoint

® Sample the other from discontinuity boundaries

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Recap: Sources of Discontinuities

Silhouette edges

View-dependent object silhouettes

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Handling Discontinuities

® Objective: estimating the integral over all boundary light paths (that are the same as
an original one except having exactly one boundary segment)

* (Solution 2) multi-directional sampling of boundary paths
® Enabled by the path-integral formulation [Zhang et al. 2020, 2021]

Boundary
To sample a boundary path: light path

® Start from the boundary segment in the middle

® Then construct the source and sensor subpaths

@
6@

.

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Physms-Based Differentiable Renderlng Algorlthms

e s —_— B — R R _— - —_—

L Boundary-samplmg differentiable rendermg \ .
| ® Path tracing with edge sampling [Li et al. 2018, Zhang et al. 2019] (solution 1) ; discussed
. | next

° Path-space dlfferentlable renderlng [Zhang et al. 2020 2021] (solutlon ?)

e —— —_—

‘ I

¢ Area-sampling differentiable rendering

® Avoids boundary integrals altogether (Sai will cover this later)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Differentiable Path Tracing with Edge Sampling

d I
0 L (%) du(x)

=[f(x) du(x) + [g(%) du'(x)
Q 0Q2

Interior integral Boundary integral

Differentiable path tracing with edge sampling

® Trace main paths to estimate the interior integral
® Same as ordinary path tracing (for forward rendering)

® Trace additional side paths for the boundary integral

® Eachside path begins with a boundary segment
(obtained with edge sampling)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Inverse-Rendering Result (zhang et al. 2019]

Target Optimization process

Parameters

Apple position

Cube roughness

rough reflection and refraction

Light-t rt ph :
'GNTErAnSport pRENOMENa: — ubsurface scattering

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Differentiable Path Tracing with Edge Sampling

Boundary

light path
To sample a boundary segment:
® Fix one endpoint

® Sample the other from discontinuity boundaries

o ~ T — —

| Requires silhouette detection, which can be expensive! J

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Path-Space Differentiable Path Tracing

d I
0 L (%) du(x)

=I f(x) du(x) + J g(®) du/'(x)
Q 0Q2

Interior integral Boundary integral

Path-space differentiable path tracing

® Trace main paths to estimate the interior integral
® Same as forward rendering

® Trace additional boundary paths for the boundary
Integ ral sepa rately (using multi-directional sampling)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Path-Space Differentiable Path Tracing

Unidirectional estimator Bidirectional estimator
® Interior: unidirectional path tracing ® Interior: bidirectional path tracing
® Coundary: unidirectional sampling of subpaths ® Councdary: bidirectional sampling of subpaths

Boundary Boundary
light paths light paths

Unidirectional path tracing + NEE Bidirectional path tracing

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Inverse-Rendering Result (zhang et al. 2020}

Config. Initial

Scene configuration:
® A glossy ring lit by four colored light sources

e Optimize cross-sectional shape of the ring

Light-transport phenomenon:

® Caustics
Cross-sectional shape
Target iter #0 (displacement x 20)
le—2 Img. RMSE
1.40 -
1.10 -
0.91 - = target shape

w— current shape

O£

0 25 50 75 100 125 150

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Inverse-Rendering Comparison (zhang et al. 2021]

Optimizing the position of a small area light

(identical inverse-rendering configurations, equal-time per iteration)

Target lter #0 Deriv. Ilter #0 Param. RMSE Img. RMSE

8 0.004 -

O

Q

i

< 0.002 -

)

am

T . 0.000 T T
50 100 0 50 100
Target Deriv. Ilter #0 Param. RMSE Img. RMSE

2 2.0 -

= 0.010 -

Q 1.5~

S

© 10

8, 0.005 -

3 .55

L]

0.0 . . 0.000 T T
0 50 100 0 50 100

Negative [N ~ Positive

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Inverse-Rendering Result (zhang et al. 2021]

Initial

Jointly optimizing of the bunny’s:
® Shape
® Surface roughness

® Optical density

lter #0 Deriv. Iter #0 Param. RMSE Img. RMSE
0.7 7 0.08 -
0.6 -
0.5 - 0.06 -
0.4 -
0.04 -
0.3 -
0.2 -
0.02 -
0.1 -
O-O | | | | O-OO | | | |
0 25 50 75 100 125 0 25 50 75 100 125
Negative ~ Positive

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

‘Boundary methods can run into some problems

Physics-Based Differentiable Rendering CVPR 2021 Tutoria

Presenter
Presentation Notes
Now these boundary methods typically introduce a new integral over discontinuities.

‘Boundary methods can run into some problems

Some challenges taced

Silhouette sampling Depth complexity Perfect specularities

Integrating over arbitrary discontinuities can be tricky

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Estimating this can have a few challenges that we don’t see for the forward rendering integral:
For one, since global illumination can require integrating the radiance at arbitrary points in the scene, finding those edges that contribute to the derivative can require additional data structures for book-keeping. It must also deal with the fact that samples on edges can be occluded from vision, which can become a large problem for dense geometry where most edges are occluded.
These methods can also have issues when you want to use perfectly specular surfaces. This is particularly true for edge-sampling, since you have to invert the mirror to connect edge samples to the camera.

‘Avoid discontinuities through reparameterization

Transform the space with 6.
"Cancels” discontinuities.

Reparameterizing Discontinuous
Integrands for Differentiable Rendering
[Loubet 2019]

Heuristic Approximation!
May not work for all samples.

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
These problems motivated Loubet et al to ask whether we can avoid sampling these discontinuities.
Since the discontinuities are only a problem because they move when you change parameters, (*) the idea is: why not transform the entire space with the discontinuities?
Their method therefore finds a transformation for it’s sampled rays (*) such that the movement of the discontinuities are cancelled by the transformation.
Unfortunately, it is hard to find a transformation that accounts for all discontinuities. (*) So, they use a heuristic blurring approach to approximate this motion, and therefore this method produces biased gradients.

Unbiased Warped-Area Sampling for Differentiable Rendering

S5A1 PRAVEEN BANGARU, Massachusetts Institute of Technology

TZU-MAO LI, Massachusetts Institute of Technology

FREDO DURAND, Massachusetts Institute of Tec hnology

s s o

ﬁi_“

B S

Gircmd Truth [FI) Ciar Miethod Edge Sampling

ull Srene Highlighted Section

Fig. 1. Differentiable rendering computes derivatives of the light transport equation. To differentiate with the existence of visibility, recent physically-based
differentiable renderers require either explicitly finding boundary points [Li et al. 2008; Zhang et al. 2020], or approximating the boundary contribution through
heuristics [Loubet et al. 2019]. We develop from first principles an unbiased estimator that computes the boundary contribution from interior (area) samples.
Our approach can be easily integrated with existing importance sampling methods and computes accurate and low variance gradients. For instance, the edpe
sampling method [Li et al. 2018] finds it difficult to consistently sample boundary points that contribute to the derivative in the soft reflection, especially
becanse of the high complexity of the scene. Our method, on the other hand, uses samples from a standard path tracer and takes advantage of BSDF and light
source importance sampling to compute a robust estimate for the derivative. We validate our derivatives against the finite difference image computed wort the

hedge's translation in the upward direction. Both our method and edge sampling used an equal number of samples.

Differentiable rendering computes derivatives of the light transport equation
with respect to arbitrary 3D scene parameters, and enables various applica-
tions in inverse rendering and machine learning. We present an unbiased
and efficient differentiable rendering algorithm that does not require explicit
boundary sampling. We apply the divergence theorem to the derivative of
the rendering integral to convert the boundary integral into an area integral.
We rewrite the converted area integral to a form that is suitable for Monte
Carlo rendering. We then develop an efficient Monte Carlo sampling algo-
rithm for selving the area integral. Our method can be easily plugged into
a traditional path tracer and does not require dedicated data structures for
sampling boundaries,

Authors' addresses: 5ai Praveen Bangam, Massachusetts Institute of Technology, Cam-
bridge, MA, shangaru@imit.edu; Teu-Mao Li, Massachusetts Institute of Technobogy,
Cambridge, MA, bumasi@mit.edu; Frédo Durand, Massachusetts nstitute of Technol-
ogy, Cambridge, MA, fredo@mitedu.

Permission to make digital or hard copies of part or all of thiz work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commerrial advantage and that copies bear this notice and the foll citation
an the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/authors).

@ 2020 Copyright held by the owner/author(s).

O730-0301,/2020/12-ART245

hitps:/\doi.org/10.1145/34 14685 341 TE33

We analyze the convergence properties through bias-variance metrics,
and demonstrate our estimator’s advantages over existing methods for some
synthetic inverse rendering examples.

CC5 Concepts: » Computing methodologies — Computer vision; Ren-
dering; Visibility.

Additional Key Words and Phrases: inverse graphics, differentiable rendering.
light transport, differentiating visibility

ACM Reference Format:

Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. 2020, Unbiased Warped-
Area Sampling for Differentiable Rendering. ACM Trans Graph. 39, 6, Arti-
cle 245 (December 2020), 15 pages. https://doiorg/10.1145/3414685. 3417833

1 INTRODUCTION

Differentiable rendering - the task of computing derivatives of
the light transport equation [Kajiva 1986) with respect to scene
parameters such as camera position, triangle mesh positions, and
texture parameters, has become inereasingly important for solving
inverse rendering problems and training 30 deep learning models.
The discontinuities introduced by visibility pose a central challenge

ACM Trans. Graph, Yol 39, Mo &, Article 245. Publication date: December 20:20.

Physics-Based Differentiable Rendering

Unbiased Warped-Area Sampling for Differentiable Rendering

Sai Bangaru, Tzu-Mao Li, Fredo Durand
(MIT CSAIL)

SIGGRAPH Asia 2020

CVPR 2021 Tutorial

Presenter
Presentation Notes
We’ll look at another area approach that avoids discontinuities, but is also able to produce unbiased gradients. We’ll also see what the challenges and tradeoffs are versus the boundary methods.

The Reynolds Transport Theorem

) : Set of continuous points
O 1): Set of discontinuous points

(5’9/Df = (/D@ef + (/ényV"ﬁ

Interior term Edge term

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Now as Shuang and Ioannis have already covered but I will recap here, (*) the correct derivative of an integral can be expressed using the Reynolds transport theorem. Essentially, the derivative of an integral is the sum of two parts: (*) The first is the integral of the derivative defined over the interior set D of continuous points. Note that this term is equivalent to applying autodiff.
(*) The second component is an integral over all the discontinuous points and this captures the contribution from the change of boundaries.

'Converting Edge-Samples to Area-SAmples

l

/(9D fv-n | isestimated through edge-samples O

o’
/
~

X
D

/ SV -1 | into area integral
oD

~

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Now edge-sampling (*) tries to estimate this term by generating samples on these boundaries. Here we ask: (*) Can we estimate this same integral without having to generate such samples? In other words, can we rewrite this boundary integral to an area integral that is defined in the interior set D.

The Divergence Theorem (causs 1813]

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
For this, we apply the divergence theorem, which states that for a integral of some vector quantity over the boundary of a (*) domain, there is an equivalent integral of the divergence of this vector quantity over the interior of the domain.

'Applying the divergence theorem to the Edge Integral

—

Goal: Rewrite /8D SV -1 |into area integral

/- — -

N

|

) l
— |
Solution: Rewrite / SV | into / V-WVof) :
oD D l
:

|

|

|

|

— |

/DV - (Vof) | can be estimated through area-samples O |
|

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
We can now realize our goal of rewriting the edge integral into an area integral. (*) This is simply an integral over the divergence of the vector quantity f times v. But, we run into a subtle problem here. The vector v that we get from the Reynolds transport theorem is only defined on the boundaries shown in blue in the illustration. This means we must use a different quantity defined over the continuous set D, and we refer to this as the warp field V_theta. Assuming we have such a field, these two integrals are now (*) equivalent, and the key advantage is that we can now estimate this using just area samples.

‘A2D Example Scene

w €& (), the domain of integration |

(b) (D)

wl ,w2 & 8Q,the discontinuous set

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
In order to visualize the warp field its helpful to consider a 2D example. (*) Consider a scene where our image is simply the integral of the intensity over the domain of the semicircle centered on the camera. (*) In this example, the _boundaries_ of the integral are simply the points that correspond to the silhouette of the polygon when projected onto the camera.

Velocity Vv :the Boundary derivative

(b)

(

. Derivative of boundary position w.r.t ©

| Jpw

0 =O

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Now, the velocity v is the rate (*) at which these values change as the underlying scene moves with theta. (*) If we plot these values onto a graph, we see that this is only defined on the set of discontinuous points, and is undefined everywhere else. This is the quantity that edge-sampling would compute for its integral.

“Warp Field]79: Extension of v to all points

V@ : defined over D \

-
V :defined over aD

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
But remember that _we_ want to compute the equivalent _area_ integral. (*) We need to find a warp field V_theta defined over the entire domain (not just the silhouette points). What is this warp field? Well, it must satisfy two conditions.

Validity of V,

Rule 1: Continuous

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
The first one says that the warp must be continuous. This is easy to see because if V is not continuous, its divergence doesn’t exist. For example, the one on the left is continuous, while the one on the right isn’t.

Validity of 1,

Rule 2: Boundary Consistent

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
The second rule is that it must be equal with the velocity at all boundary points. This rule follows directly from the divergence theorem. As an example, this field on the left is boundary consistent, while this field on the right is not consistent. If we have a field that satisfies both these rules, then our integral conversion is correct. Our problem has now been reduced to smoothly interpolating the velocity at discontinuous points, to the rest of the domain.

‘Interpolation without knowledge of boundaries

/
Available quantities

Origin point

Ray

Intersection

Primitive

No access to discontinuity points

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Producing this interpolation can be a bit tricky. (*) Unlike a traditional interpolation problem, the only quantities we know about a specific sample are the origin point, the ray and the intersected primitive. What we don’t know are the locations of the discontinuities. Our primary goal is to interpolate while avoiding the cost of locating these boundaries. and so we call this the ‘blind interpolation’ problem where don’t have explicit access to the positions of the control points.

Constructing]79

|Attempt 1 === Find Opw through implicit derivative | (Incorrect)

aw y V édirect) (

y = INTERSECT (w, 0) > Opw =

At all points (not just boundaries)

+ Boundary consistent

- Not continuous

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
One way to find such an interpolation is to use the implicit derivative approach. (*) We know the intersection point Y is a function of both our ray direction omega and the scene parameter theta. This means the two quantities are implicitly related through the intersection function. (*) We can then find the derivative of omega w.r.t theta just by taking the ratio of their individual derivatives.
(*) When we plot the result, we see that the warp field is by definition consistent at the boundaries, but isn’t defined anywhere outside the surface because the intersection doesn’t exist. So this isn’t continuous.
Intuitively, we can try to blur this in some way.

‘Constructing)),

k(.,.) = Gaussian filter

+ Continuous
- Not boundary consistent

Physics-Based Differentiable Rendering

CVPR 2021 Tutorial

A

Attempt 2 == Filter Attempt 1 with a Gaussian filter |

Vv ggaussmn) (

(Incorrect)

w)

Presenter
Presentation Notes
And that’s our second attempt: (*) We convolve the entire domain with a uniform Gaussian filter by introducing another integral. (*) Predictably, the resulting warp field is continuous, but we see that a uniform blur has no guarantees on preserving consistency at the boundary points.

‘Boundary-Aware Weighting

Goal: Find weights k(w, w/) s.t.

-
ldeal weighting function
(]
w
—

Approach Dirac delta near boundaries

t boundaries.

(=

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
At a high-level, what we want to do is blur the function at interior points while keeping the non-filtered values
at the boundaries. And for this we need boundary dependent weights that are smooth in the interior of the surface, but a sharp Dirac delta at
boundary points. Intuitively, this works because convolving a function with a Dirac delta just returns the same function.

‘Boundary-Aware Weighting

/

Available quantities

Don’t have Discontinuity set (Boundary sampling) \

Origin point o have Implicit function of the boundary
(Boundary testing)
Ray

Intersection

B(w’): Boundary test function

Primitive such that

B(w')=0 for W' € 00

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
However, remember that we don’t actually have access to the set of discontinuities. (*) We can only access the current intersection point and its local geometry.
It turns out that (*) we can still achieve our goal if we can instead compute some function B(.) whose zero-set is the set of discontinuous points.
Intuitively, this is an implicit representation of the boundary and comes with the advantage that it is much easier to compute when compared to explicitly finding the
boundary.

‘Boundary-Aware Weighting

< N

Implicit Boundary through geometric normals :
y sampling)

ooundary
g)

Bw) = ol(wm) |
(w,n) =0

at boundaries

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes

As an example, imagine we have a smooth shape, we can now use the dot product of the ray direction with the intersection’s normal as the boundary function, (*) because conveniently, this is 0 at boundaries.

‘Constructing),

|Our Approach ====p Filter Attempt 1 with harmonic weights |

klw,w)

D(w,w’) [T

Distance function

B(w')

Boundary test

+ Boundary consistent

Physics-Based Differentiable Rendering

+ Continuous

CVPR 2021 Tutorial

A

Vé(’harmonic) (

w)

Presenter
Presentation Notes
Using this we can design convolution weights based on harmonic interpolation. Harmonic weights are just the inverse of the distance between the two points.
However, instead of using only distance, we pad it with our implicit boundary function.

Effectively this means the contribution of a boundary point approaches infinity as the sample point approaches the boundary. (*) This weighting scheme now produces a field that is both boundary consistent and continuous.

‘Computing),

1. Sample path using path tracer (N paths)

For each bounce:

2. Sample auxiliary rays (N’ rays)

3. Compute boundary term B() locally

4. Compute weight k(.,.) and 89w

5. Find weighted mean

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Now that we have a warp field, we need to numerically compute it, which requires another Monte Carlo sampler.

Putting this all together (*) our process first uses a traditional path tracer to sample a light path.
At each bounce, (*) we sample auxiliary rays for the inner integral. (*) We then use autodiff to find the implicit derivative and the weights
at each of these auxiliary rays. (*) Finally, we compute the weighted mean of all these rays to find an estimate for the warp at the current bounce.

RESULTS

Presenter
Presentation Notes
Now we move on to some results from our method.

= - =
=t P 1 "ﬂd%‘irl'#ﬂ.i = """:"'.'L'!'—
™ == % =, ‘ =
™ ¥ ' ap ry
— ey it '
e ‘“ll‘._
E e i z

I";'l-:. g i 3—
T i LI y

P _. .:'.:] -
— e _"". i j':1.
" - z "
£ 2
L r S med
’ o - = -'F-.E#.‘.- Y
A B
— - f E
i
- -

HEDGE

Reference Li et 3l. 2018 Ours
Derivative Edge-sampling without
Russian roulette

Image I

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
When comparing against edge-sampling, area methods tend to handle global illumination better. (*)Here, we see that edge-sampling has trouble with specular reflections. This phenomenon gets worse for more complex geometry like the Hedge.
By contrast, (*) our approach avoids this problem because we use a typical path tracer for derivative samples and benefit from the forward path tracer’s importance sampling.

Pose estimation can fail with biased gradients

QO Initialization

Physics-Based Differentiable Rendering

@ Reparameterization
(Biased gradients)

CVPR 2021 Tutorial

Multiple Initializations

Optimization trajectories

Presenter
Presentation Notes
As we mentioned before our method is an unbiased version of the other area method: reparameterization.
But does that bias actually matter for applications? We see that for a 6 degree-of-freedom pose estimation problem for complex geometry, biased methods can have badly behaved gradients that can cause the optimization to diverge completely. We also verify the robustness of the warped-sampling approach by using several different initializations. This method converges on almost all initializations.

‘Pose estimation can fail with biased gradients

@ Reparameterization

(Biased gradients)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Also consider a more complicated problem of trying to estimate the pose of a corkscrew using _just_ the shadows. The complicated geometry make this very difficult, and you need accurate gradients to make progress beyond a certain point. We’ll point out that biased gradients get the coarse pose correct, but the fine adjustment fails.

'Summary of Warped-area sampling

4 4 4
Edge-integral to Warp field conditions Harmonic interpolation

Area-integral

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
To summarize warped-area sampling, we first applied the divergence theorem to convert the edge-integral into an area-integral over a warp field. We then derived the conditions on this field for this to be valid, and finally we described one approach to computing such a warp field using harmonic interpolation.
In doing this we avoid discontinuity sampling, but at the cost of additional convolution rays for each primary ray.

Now let’s change gears and take a step back

-Nlany programs in graphics have this problem

E=lllll

-

f

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

(Bangaru 2020)

(Du 2020)

Presenter
Presentation Notes
Now we’ve seen that the physically-based rendering equation is typically an integral. I would actually like to draw your attention to the fact that a lot of graphics applications actually have this same issue. They are integrals over discontinuities. That includes Ray-tracing, rasterization, (*) finite element simulation as well as (*) physical trajectory simulation

Many programs in graphics have this problem

EtcC..

-

We have seen why it's difficult
to differentiate such integrals

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
, and (*) many more.
Shuang and Ioannis have given you an idea of just why this is a difficult task.

=

Existing solutions to this specific problem

Fig. 1.
with rd
compu
shows

As one

(a) witl
uptim!

methos
Gradies
graphif

Author

© M01E
'Husul

Graphid

Path-Space Differentiable Rendering

CHENG ZHANG, University of California, Irvine
BAILEY MILLER, Carnegie Mellon University

KAl YAN, University of California, Irvine

IOANNIS GKIOULEKAS, Carnegie Mellon University
SHUANG ZHAOQ, University of California, Irvine

w003
an
T
Derivative with respect to sun location
Fig. 1. We introduce path-space differentiable rendering, a new theoretical framework to esti ivatives of radi icm with respect

to arbitrary scene parameters (e.g.. material properties and object geometries). By directly differentiating full path integrals, we derive the differential path
integral framework, enabling the design of new unbiased Monte Carlo methods capable of efficiently estimating derivatives in virtual scenes with complex
geometry and light transport effects. This example shows a dinning room scene lit by the sun from outside the window. On the right, we show the corresponding
derivative image with respect to the vertical location of the sun. (Please use Adobe Acrobat to view the teaser images to see them animated.)

Physics-based differentiable rendering, the estimation of derivatives of ra-
diometric measures with respect to arbitrary scene parameters, has a diverse
array of applications from solving analysis-by-synthesis problems to train-
ing machine learning pipelines incorporating fmwa'rd rendering processes.
Unfortunately, general-purpose diffi iahl i remains chall

due to the lack of efficient estimators as well as the need to ldennfy and
handle complex discontinuities such as visibility boundaries.

In this paper, we show how path integrals can be differentiated with
respect to arbitrary differentiable changes of a scene. We provide a detailed
theoretical analysis of this process and establish new differentiable rendering
formulations based on the resulting differential path integrals. Our path-
space differentiable rendering formulation allows the design of new Monte
Carlo estimators that offer significantly be‘rter efficiency than state-of-the-art

We validate our method by comparing ouwr derivative estimates to those
generated using the ﬁmlze—dllfemnm method. Tn d.emunsl:rate the effective-
ness of our technique, we compare i g p with a
few state-of-the-art differentiable rendering methods.

CCS Concepts: » Computing methodologies — Rendering.
Additional Key Words and Phrases: Differentiable rendering, path inte-
gral, Monte Carlo rendering

ACM Reference Format:

Cheng Zhang, Bailey Miller, Kai Yan, loannis Gkioulekas, and Shuang Zhao.
2020. Path-Space Differentiable Rendering. ACM Trans. Graph_ 39, 4, Arti-
cle 143 (July 2020), 19 pages. https://doLorg/10.1145/3386569 3392383

1 INTRODUCTION

Pharetoeoh

methods in handling complex geometric d inuities and light transport
phenomena such as caustics.

Authors' addresses: Cb:ngﬂmwum\mly nf\:ahfnma. me h iedu;
Bailey Miller, Carnegie Mellon Uni 3 il com; Kai Yan,

Um\mlly of Califarmis, Irvine, h:ul@un.adu Joanmis Ghmjelns. Camegie Mellon
«du; Shuang Zhao, University of California, Irvine,
uu@.m.md..

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

fior profit or commercial advantage and that copies bear this notice and the full citation

an the first page. Copyrights for components of this work owned by others than the

:uﬂlnr(s} musst be honored. Abstracting with credit is permitted. To copy otherwise, or
to post on servers wmmdmnbuelu luls,mqunespu—mspe:ﬁ:pmuum

and/ar a fee. Request permi fram org.

@ 2020 Copyright held by the owner/authars). Publication rights censed to ACAM.

0730-0301/202007-ART 143 $15.00

Tttps/doi.org/10.1145/3386569. 3392353

Phy d light transport simulation, a core research topic in
computer graphics since the field's inception, focus on numerically
estimating radiometric sensor responses in fully specified virtual
scenes. Previous research efforts have led to mature forward ren-
dering algorithms that can efficiently and accurately simulate lght
transport in virtual environments with high complexities.

Differentiable rendering computes the derivatives of radiometric
measurements with respect to differential changes of such environ-
ments. These techniques can enable, for example: (i) gradient-based
optimization when solving inverse-rendering problems; and (if) ef-
ficlent integration of physics-based light transport simulation in
machine learning and probabilistic inference pipelines.

ACM Trans. Graph., Vil. 39, No. 4, Article 143. Publication date: July 2020.

Physics-Based Differentiable Rendering

Differentiable Vector Graphics Rasterization for Editing and Learning

TZU-MAQ LI, MIT CSAIL

! |

Fig. 1. Wi
rasterizati
geometric
result. (d)
image ret
strokes as)

We introd
raster im
mization
vector
after pincel
tions: an g
technique.
as conflat)
high-g
respect to
We
a vectar
algorithm|
perceptual
well-know
generative
under a V4§

Authors’ ad
Research, I
Jonathan R4

Permission|

far prafit o
am the first
For all othe
© 2020 Cap|
07300301

hittps://doid

Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning

Shichen Liu'?, Tianye Li'?, Weikai Chen', and Hao Li'?3

'USC Institute for Creative Technologies
*University of Southern California
3Pinscreen
{lshichen, tli, wechen}@ict.usc.edu haoBhac-1i.com

Abstract

Rendering bridges the gap between 2D vision and 3D
scenes by simulating the physical process of image forma-
tion. By inverting such renderer, one can think of a learning
approach to infer 3D information from 2D images. How-
ever, standard graphics renderers involve a fundamental
discretization step called rasterization, which prevents the
rendering process to be differentiable, hence able to be
learned. Unlike the state-of-the-art differentiable render-
ers [29, 19], which only approximate the rendering gradi-
ent in the back propagation, we propose a truly differen-
tiable rendering framework that is able to (1) directly ren-
der colorized mesh using differentiable functions and (2)
back-propagate efficient supervision signals to mesh ver-
tices and their attributes from various forms of image repre-
sentations, including silhouette, shading and color images.
The key to our framework is a novel formulation that views
rendering as an aggregation function that fuses the proba-
bilistic contributions of all mesh triangles with respect to
the rendered pixels. Such formulation enables our frame-
work to flow gradients to the occluded and far-range ver-
tices, which cannot be achieved by the previous state-of-the-
arts. We show that by using the proposed renderer, one can
achieve significant improvement in 3D unsupervised single-
view reconstruction both gualitatively and quantitatively.
Experiments also demonstrate that our approach is able
to handle the challenging tasks in image-based shape fit-
ting, which remain nontrivial to existing differentiable ren-
derers. Caode is available at https://github.com/
ShichenLiu/SoftRas.

1. Introduction

Understanding and reconstructing 3D scenes and struc-
tures from 2D images has been one of the fundamental goals
in computer vision. The key to image-based 3D reasoning
is to find sufficient supervisions flowing from the pixels to
the 3D properties. To obtain image-to-3D correlations, prior
approaches mainly rely on the matching losses based on 2D

Probability Maps {D; } w/ Color
v
Soft Rasterizer © Aggcganc ancmm A(-J

- Rendered Image T,

Standard Rmnmr R Discrete Sampling

Figure 1: We propose Soft Rasterizer R (upper), a truly dif-
ferentiable renderer, which formulates rendering as a dif-
ferentiable aggregating process A(-) that fuses per-triangle
contributions {D;} in a “soft” probabilistic manner. Our ap-
proach artacks the core problem of differentiating the stan-
dard rasterizer, which cannot flow gradients from pixels to
geometry due to the discrete sampling operation (below).

key puints/contours [3, 35, 26, 32] or shape/appearance pri-
ors [, 28, 6, 23, 45]. However, the above approaches are
either limited to task-specific domains or can only provide
weak supervision due to the sparsity of the 2D features. In
contrast, as the process of producing 2D images from 3D as-
sets, rendering relates each pixel with the 3D parameters by
simulating the physical mechanism of image formulation.
Hence, by inverting a renderer, one can obtain dense pixel-
level supervision for general-purpose 3D reasoning tasks,
which cannot be achieved by conventional approaches.
However, the rendering process is not differentiable
in conventional graphics pipelines. In particular, stan-
dard mesh renderer involves a discrete sampling opera-
tion, called rasterization, which prevents the gradient to be
flowed into the mesh vertices. Since the forward rendering

CVPR 2021 Tutorial

Flow

TAO DU, MIT CSAIL

KUI'WU, MIT CSAIL

ANDREW SPIELBERG, MIT CSAIL

WOJCIECH MATUSIK, MIT CSAIL

BO ZHU, Dartmouth College

EFTYCHIOS SIFAKIS, University of Wisconsin-Madison

I* - s
e e

Functional Optimization of Fluidic Devices with Differentiable Stokes

'I'nr | outlet

Design space:
- NURES control points Differentiable Stokes flow Gradient-based optimization Optimized shape
- Rotation angle & about r-axis simulation o Nalacity W

Fig. 1. Our systemn automates the design of fluidic devices with differentiable stokes flow. Given a parameterized design in the form of NURBS
surfaces or curves (leftmost) that separate rigid boundaries from fluid flow, we employ a Stokes flow (second from left) that evaluates the performance
of this design. The flow is differentiable and gradients can be quickly evaluated, enabling yradient-based optimization (center) of the control points,
and thus, the boundary. The optimized design (rightmost) can be specified to operate in one configuration or several. This example features an
optimized fluidic rotational switch that shifts flow from the top outlet path to the bottom outlel path when turned.

We present a method for performance-driven optimization of fluidic devices.
In our approach, engineers provide a high-level specification of a device
using parametric surfaces for the fluid-solid boundaries. They also specify
desired flow properties for inlets and outlets of the device. Our computa-
tional approach optimizes the boundary of the fluidic device such that its
steady-state flow matches desired flow at outlets. In order to deal with com-
putational challenges of this task, we propose an efficient. differentiable
Stokes flow solver. Our solver provides explicit access to gradients of perfor-
mance metrics with respect to the parametric boundary representation. This
key feature allows us to couple the solver with efficient gradient-based opti-
mization methods. We demonstrate the efficacy of this approach on designs
of five complex 3D fluidic systems. Our approach makes an important step
towards practical computational design tools for high-performance fluidic
devices.

CC5 Concepts: « Computing methodologies — Physical simulation.

Additional Key Words and Phrases: Physically-based simulation, fluid simu-
lation, computational design optimization

Authors' addresses: Tao Du, MIT CSAIL, taodug@csail.mit.edu: Kui Wi, MIT CSAIL,
lmm-@r_mlwmdu. Andrew Spielberg, MIT CSAIL: \M:l;n:l:hManuuk, MIT CSAIL,
inck Lmit edu; Bo Zhu, h Callege, b : h edu; Eftych

s-ﬁhs.Uuwnnry of Wisconsin-Madison, sifakis@os wisc.edu.

Permission to make digital or hard copies of part ar all of this wark for personal or
classroom use is granted without fee provided that copies are not made or distributed
for praéit or sommercial advantage and that copies bear this notice and the full citation
om the first page. Copyrights for third-party components of this work must be honared.
For all other uses, contact the ewner/author(s).

© 2020 Copyright held by the owner/authar{s)

07300301 2020/ 1 2-ART197

hﬂps'.n'n'dni.urg.'lﬂ.lbﬁ.'!-tldﬁ&i!-tl?ni

ACM Reference Format:

Tao Du, Kui Wi, Andrew Spielberg, Wojciech Matusik, Bo Zhu, and Eftychios
Sifakis. 2020. Functional Optimization of Fluidie Devices with Differentiable
Stokes Flow. ACM Trans. Graph. 39, 6, Article 197 (December 2020), 15 pages.
hittps://doi.org/ 10.1145/34 146853417795

1 INTRODUCTION

Fluidic devices are key building blocks for a variety of ubiquitous
products, including medical diagnostic devices, filtration systems,
bioreactors, internal combustion engines, hydraulic actuators, and
even eooling manifolds for GPUs. However, designing complex flu-
idic devices is challenging as it requires expert knowledge and typi-
cally many trial-and-error iterations. These challenges promote the
importance of finding computational strategies for simulating and
designing these structures. Unfortunately, such approaches are chal-
lenging. Brute-foree, high-resolution, physics-based simulations of
fluidic systems are inherently slow and highly sensitive to geometric
configurations and initial conditions, limiting progress in methods
for computationally designing fluidic devices with high resolution
and complex functions. Furthermore, performance-driven design
methods (also often referred to as inverse methods) require using an
expensive fluid simulation within a numerical optimization method.
This effectively makes current approaches for performance-driven
optimization impractical.

In this work, we present a first step toward functionally optimiz-
ing the design of fluidic devices, focusing on the more tractable
Stokes flow, which is well-suited for the behaviors of desired fluidic
functionality. Stokes flow assumes that fluid velocities are slow and

ACM Trans. Graph., Vol 39, No_ 6, Asticle 197. Publication date: Diecember 2020.

Presenter
Presentation Notes
Now, each of these problems do have solutions. We have already seen different methods for path tracing. There’s a similar situation for rasterization, (with SoftRas and the same goes for differentiating physical simulation)

| Existing solutions to this specific problem

/ Integrals of

discontinuities

ray_trace(t) ”

rasterize(t)

simulate(t)

Physics-Based Differentiable Rendering

p
These are hand-derived tor their pipelines \

/ Automatic
Differentiation?

TO?

CVPR 2021 Tutorial

-

Derivative program

d

~

J

dt

Presenter
Presentation Notes
One issue with these works is (*) that they hand-derive solutions for their fixed pipeline,
which doesn’t transfer easily to different domains.
For instance, SoftRas cannot be applied directly to a finite elements simulation without manual re-derivation.
(*)It is natural to wonder, then, if we can automate the process (*),
and the goal of our work is to provide a systematic solution to this question

This is not to say that hand-derived methods don’t work. There are several approaches that successfully provide solutions for their problem domains, (including some presented at this very session!)?

Systematically Differentiating Parametric Discontinuities

SAl PRAVEEN BANGARLU", MIT CSAIL

JESSE MICHEL", MIT CSAIL

KEVIN MU, MIT CSAIL

GILBERT BERNSTEIN, UC Berkeley and MIT CSAIL
TZU-MAO LI, MIT CSAIL

JONATHAN RAGAN-KELLEY, MIT CSAIL

integrate|
®=E to 1,
(€t} ?1:8

')
f [z < t|dx Qur Language (Teg)
]

Integral with
Parametric
Discontinuities

if @ ¢ t € 1z
d_put += 1

foreach x:
if a € t:
d_put += 4@

- - e .. W up‘li'rlmthn

foreach x:
if x € 2
d_put += B

Code Derivative

Traj Stress-strain
optimizatin optimization
Applications

Fig. 1. We propose a language for the automatic differentiation of integrals with discontinuities. Existing auto-diff frameworks require integrals to be
discretized into summations prior to differentiation, and therefore lose the derivative contribution from discoentinuities. Our method produces a statistically
consistent derivative program by introducing integration as a language primitive. which allows us to differentiate discontinuities in continuous space, before

discretizing them into summations over discrete samples.

Emerging research in computer graphics, inverse problems, and machine
learning requires us to differentiate and optimize parametric discontinuities.
These discontinuities appear in object boundaries, occlusion, contact, and
sudden change over time. In many domains, such as rendering and physics
simulation, we differentiate the parameters of models that are expressed as
integrals over discontinuous functions. Ignoring the discontinuities during
differentiation often has a significant impact on the optimization process.
Previous approaches either apply specialized hand-derived solutions, smooth
out the discontinuities, or rely on incorrect automatic differentiation.

We propose a systematic approach to differentiating integrals with dis-
continuous integrands, by developing a new differentiable programming

“Eoth anthars contributed equally to this research.

Authors' addresses: Sai Praveen Bangam, MIT CSAIL, Cambridge, MA, shangari@mit.
etr; Jesse Michel, MIT CSAIL, Cambridge, MA, jmmicheli@mit.edu; Kevin Mu, MIT
CSAIL, Cambridge, MA, kmui@csail mitedw Gilbert Bernstein, UC Berkeley, Berkeley,
CA, MIT CSAIL, Cambridge, MA, gilbo@berkeley.edu; Tru-Mao Li, MIT CSAIL, Cam-
hiﬂg\e. MA, I:u.l.ma.n@umtﬂlu. _'I'nnl'ﬂn.n Ra.glu'l—l!:u:y. MIT CSAIL, C:u'nhu:icla;l.-, MA,
jrki@csail mit.edu.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commerrial advantage and that copies bear this notice and the full citation
an the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner,author(s).

i 2021 Copyright held by the owner/authors).

O730-03012021/8-ART 107

https: doi.org/ 1001145/ 3450626 3459775

language. We introduce integration as a language primitive and account for
the Dirac delta contribution from differentiating parametric discontinoities
in the integrand. We formally define the language semantics and prove the
correctness and closure under the differentiation, allowing the generation
of gradients and higher-order derivatives. We also build a system, Tea, im-
plementing these semantics. Our approach is widely applicable to a variety
of tasks, including image stylization, fitting shader parameters, trajectory
optimization, and optimizing physical designs.

CCS Concepts: » Theory of computation — Denotational semantics: «
Mathematics of computing — Differential caleulus; Stochastic control
and optimization; Probabilistic inference problems; « Computing method-
ologies — Computer graphics; Visibility: Animation: Computer vision;
Modeling and simulation.

Additional Key Words and Phrases: Automatic differentiation, differentiable
programming, differentiable graphics, differentiable rendering, differentiable
physics, domain-specific language.

ACM Reference Format:

Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li.
and Jonathan Ragan-Kelley. 2021. Systematically Differentiating Farametric
Discontinuities. ACM Trans. Graph 40, 4, Article 107 (August 2021), 17 pages.
httpsy/ doi.org/ 10.1145/3450626 3459775

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021,

Physics-Based Differentiable Rendering

Sai Bangaru*, Jesse Michel*, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, Jonathan Ragan-Kelley

SIGGRAPH 2021 (to appear)

CVPR 2021 Tutorial

Systematically Ditferentiating Parametric Discontinuities

(MIT CSAIL & UC Berkeley)

Presenter
Presentation Notes
And that is what I’ll be talking about now.
In this work we propose a new auto-diff approach for the types of integrals we have encountered so far.

But to see what’s wrong with existing auto-diff methods, we ‘ll start with a simple example.

A simple demonstration

q /1
/ X < t]dx
dt /,

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Let’s see a very simple example where we try to compute the derivative with respect to t of an integral with the parametric discontinuity x < t.
The bracket notation is defined so that if x is less than t then the integrand is 1 and it is 0 otherwise

Derivative of the analytical integral

0 ift <0
1
/[X<t]dx=<t ifo<t<1
0
1 if1>¢t
0 ift <0

d 1
& x<tlax=<i [0 <t <1]

Fa\
u it 1>
] a“ - G
-
Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
In order to ground the problem, we compute the solution by analytically integrating and then differentiating.
Just from looking at the graph we can see that if t is negative we integrate over no mass.
If t is between 0 and 1, the value of the function is 1 for distance t, so the integral is t.
and if t is greater than 1, then the value of the integral is 1.

Computing the derivative with respect to t is easy.
We just compute the derivative for each part of the piecewise function (*).
The derivative with respect to t of (*)0 is 0, of (*)t is 1, and of (*)1 is 0.
Notice that the function is 1 in the range 0 to 1 and 0 otherwise.
(*) We may more compactly express this with our bracket notation.

‘Naive autodiff of integrals with derivatives

/01[x<t]dx EN:%[§<’°]

d
[+% T
DISCRETIZE FFERENTIATE
0o<t<1]

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
In practice, we cannot compute integrals analytically.
As a result, it is common to use numerical techniques such as quadrature or Monte Carlo estimation.

Thus, we first (*) discretize the integral at a number of points and then (*) differentiate each of the samples.

The derivative is 0. Why? Because the function is constant for all sample points.

Unfortunately, this answer is (*) incorrect.

While in general, autodiff is correct almost everywhere, this implementation does not encode the semantics of the integral.

Correct derivatives ot integrals wit

discontinuities

/Ol[x<t]dx /Olé(t—x)dx

_i >
d¢

DIFFERENTIATE

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Instead, we will now compute the derivative without discretizing.

The derivative of the step function is 0 everywhere except t where it is infinity, as represented by delta of t-x.

Remember that derivative of discontinuity is dirac.
We’ll figure out how to actually evaluate this later.

Integrals with discontinuities break auto-diff

0 t 1

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Taken together, (*) discretizing before you (*) differentiate produces the (*) incorrect result, but (*) just differentiating produces the correct answer.

‘The need for an integral primitive

t

foreach x: 3 foreach x:
out += 1 d out += 0

ﬁoovooeo_b
0 L 1

integrate(<\7 0 t 1
x=0 to 1, Add integral primitive

(x <t) 21 :0

)
F’’
L L 1 integrate(
d x=0 to 1,
az delta(t - x)
)
io t 1

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Let’s quickly look at this in code.

(*) Discretizing involves iterating over the variable of integration and incrementing whenever x < t.

(*)The derivative just applies to the body of the conditional, so the answer is 0.

(*) It is necessary to have an integral primitive in order to write the code for the initial expression,

(*) and now, because we can’t turn it into a discrete sum, we need an integral primitive in the derivative too.

Todo: fix animations.

Discontinuities now need a delta operation

integrate(
Xx=0 to 1,

(x < t) 21 :

)

Physics-Based Differentiable Rendering

0

D&

\

Not a well-defined
operation

-

Add a delta operator

i:!!!.I'e\
X=0 0 1

)

delta(t—x)

CVPR 2021 Tutorial

X

foreach x:
if x < t:
d out += 0

Presenter
Presentation Notes
But the catch is that, to handle discontinuities, we need a (*) Dirac delta operator
Unlike other typical operators, the Dirac delta is really not (*) a well-defined function, it’s literally infinity at a point.
That is just one of many reasons that make it intractable to allow them as operations in programs.

Recap: Differentiate first, then discretize

1 1
/ [x < t]dx / O(t—x)dx [0 <t <1]
0 0

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
And so, our process has a second step that eliminates delta terms to produce a new delta-free expression, that we can then evaluate properly. Note here, that unlike traditional auto-diff, this approach gets the correct answer.
But wait, how did we do this?

To do a quick recap, we first compute the derivative, introducing a delta term, and then eliminate the delta, (*) producing the correct answer.

Now, all of this has been on a toy example.
We’re now going to scale up to general expressions by representing these transformations in a new language called, Teg.

EEIiminating deltas with the Sifting property

b
/ 0(x)f(x)=|a < 0<bl|-£(0)

X=Qa /7 \
Single variable of integration I

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
For this, we use the Sifting property, which is essentially just integral convolution, but for the Dirac delta.

The catch (*) here is that it only applies to deltas containing a single variable of integration. (*) That is, it’s exactly aligned with the axis of integration

Pass 2: Delta Normalization

1 1
/ / 5(2x2+2y2—t)dydx
—1 —1
(Notin normal form I

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
But in practical applications, that’s not really true, what if we (*) had a program that described a circular discontinuity? Maybe something like this. (*) Formally, we say that this discontinuity is not in _normal_ form.

In that scenario, our system identifies and applies appropriate changes of variables to the integrals.
(*)
In this example, we would first apply a polar coordinate transform.

In the second pass, (*) Teg reparameterizes the (*) delta expression (*) so it contains a single variable of integration. In this example, Teg (*) first converts (*) to polar coordinates.

Pass 2: Delta Normalization

]]
/ / Sl2r—t) dydx
-1 J-1

Still not in normal form I

/
7 | 2r —t «—r >

Physics-Based Differentiable Rendering

Y

CVPR 2021 Tutorial

Presenter
Presentation Notes
But the new expression still isn’t in (*) normal form. So, (*)we do (*) another reparameterization from 2r - t to r'.

Pass 2: Delta Normalization

]]
/ / 5 (r") dydx
-1 J-1
Final coordinates are in normal form! I

v Y

i | 2r —t «r’

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Which now (*) results in an expression in normal form (*) – with a single variable of integration in the delta.

But we still need to covert the rest of the program to these coordinates.

Pass 2: Delta Normalization

]]
; / / 5(2x2+2y2—t)dydx
-1 J -1
27T]
/ / 6(2r —t)rdrd6
o Jo

27T
/ (r +t)/2(dr’/2)d6

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
The process of performing the first (*) and second (*) change of coordinates is identical. For simplicity, we focus on the second.

Pass 2: Delta Normalization

27T]
/ / O(2r —t)rdrdf
0o Jo

2r —t — r’

27T
/ r’)(r" +t)/2 (dr’/2)d6

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Teg applies the change of coordinates to the bounds of integration and the delta (*)

Pass 2: Delta Normalization

27T]
/ / O(2r —t)rdrdf
0o Jo

r— (r'+t)/2

.
Inverse I

27T
/ (r +t)/2(dr’/2)d6

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
It then substitutes the old variables for the new variables (*) using the inverse of the condition.

Pass 2: Delta Normalization

27T]
/ / O(2r —t)rdrdf
0o Jo

dr — dr’/2

Derivative I

27T
/ r’)(r" +t)/2 (dr’/2)d6

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
And finally, Teg adds the (*) Jacobian term to account for the change of variables.

Note that we use a lot of these changes of variables

At this point, our delta is in a single variable of integration, and we can use the Sifting property to eliminate it.

All passes together

[rerex(5(o+8(g2)

/

Delta-free!

1. Normalize
expression

---[a< O<b]---|

Physics-Based Differentiable Rendering

3. Annihilate (Sifting)

CVPR 2021 Tutorial

o)

. Change-of-coordinates

an .| B
. A '

Presenter
Presentation Notes
Taken together, these passes describe a method to differentiate general integrals with discontinuities.

Our process first breaks (*) down complex expressions into one piece per delta term. And this is possible because differentiation is a linear operator.
(*) Each term is then reparameterized to bring it to a normal form, (*) and then subsequently eliminated via Sifting.

systems and Applications

CVPR 2021 Tutorial

'Applications

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
But what is it useful for?

As I noted before, nearly every domain in graphics contains some form of integral estimation. Our system automates the challenge of differentiation, and provides an opportunity to revisit applications that are difficult to differentiate by hand.
We’re now going to show a few concrete applications that use our compiler.

'Application: Image Style Filters

rasterize(t)

{ Target image

Physics-Based Differentiable Rendering

CVPR 2021 Tutorial

‘ [riangulated image \

Presenter
Presentation Notes
Our first application is image stylization, which is particularly relevant (*) here since it can be solved by differentiating a rasterizer, and then minimizing a loss function.
Note that in order for this to work properly we must account for the delta terms in the derivative.

‘lgnoring §-terms produces 0 gradient

-

o

Target Image]

Physics-Based Differentiable Rendering

p
Os account for

discontinuities

-

No gradient

Optimize with

-
Optimize with
Ours
_
CVPR 2021 Tutorial

KTraditionaI Auto-diff

J

Presenter
Presentation Notes
Starting from the same initialization, we optimize for a triangulated image using the gradients from Teg and compare against traditional auto-diff.
It turns out that not accounting for the delta terms in this program, (*) leads to a failed optimization. In fact, there is no gradient whatsoever, because traditional auto-diff only differentiates and the color is constant in the triangle.

Starting from the same initialization, we optimize for a triangulated image.

Using Teg creates a visually pleasing result, while traditional autodiff fails to optimize.

‘Thresholded noise shaders

4 4)

[hresholded noise
(Discontinuous)

Perlin noise map]

.

Threshold
... */noise > t] * ...

Y Inverse problem:

Optimize noiseto fit a target pattern Boz0’s Donut
(Perlin 1985)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
We now turn to a new application in noise-based shaders, which contain more complex discontinuities.
(*)

The original Perlin noise paper proposed thresholding noise shaders as a way to design interesting patterns. But since then this method has seen widespread use in procedural modelling, which means differentiating this type of shader can enable exciting inverse design problems, as well as enhance existing differentiable renderers.

(To be able to differentiate discontinuous shaders is of particular interest since it enhances existing differentiable renderers as well as enable new inverse design problems.)

Inverse shader design using our approach

4) 4 o .
Guide image Optimized with]

Ours
U _

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
We apply our differentiation approach to a design problem where we optimize random noise to fit a target image (*)

As we show here, we can successfully solve for our design objective because our derivatives correctly account for the thresholding. But what happens if we don’t?

“lgnoring delta terms produces

incorrect results!

- e
Boundaries have no gradient

Optimizes for boundaries!
(only colors)

A

‘ Guide image I ‘ Ours \ ‘ Without deltas I

Physics-Based Differentiable Rendering

Presenter
Presentation Notes

Well, like our image processing example, ignoring those terms results in different, and visibility sub-optimal solutions.
(*) We stress that it is important for shaders to account for their boundary terms, because otherwise, your derivatives can have the wrong sign and cause your loss to diverge.

'Application: Animation with hard contact

Physics-Based Differentiable Rendering

‘ Constant time-steps \

SN
—@

CVPR 2021 Tutorial

-

&

ll-defined derivative

~

/

Presenter
Presentation Notes
For our last example, we try to animate a bouncing ball between points A and B.
We aim to animate a bouncing ball with hard contact at the floor.

Usually in graphics, we simulate this with a constant time step ODE.
But, the ball can penetrate under the floor, resulting in unstable derivatives.

Inverse physical simulation with space-time constraints

‘ Positions X |

Spacetime constraints (1988)

Fixed to surface

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Instead, if you are trying to do differentiable hard contact,
we suggest looking at the space-time constraints formulation,

where we parameterize the trajectory by its positions and time-stamps,

and optimize for the Lagrangian integral.

This allows us to handle hard contact,

Physical simulation with space-time constraints

g
Discontinuous

velocity

Physics-Based Differentiable Rendering

Presenter
Presentation Notes
However, the velocity term in this integral is now discontinuous, which is where we need our differentiation approach.

N\

Optimized with Ours
(Physically correct)

/

Physics-Based Differentiable Rendering

CVPR 2021 Tutorial

~

Optimized with Traditional Auto-diff
(Physically /ncorrect)

~

J

Presenter
Presentation Notes
And we show here that not handling this discontinuity properly leads to
a physically incorrect trajectory which spontaneously changes direction.

‘Limitations & Future Directions

. Diffeomorphisms
0 0 |
Quadratic
User-defined!
N

~

. Scalability

Scalar variables

(no indexing)

Expression lang
(no looping)

Physics-Based Differentiable Rendering

~

CVPR 2021 Tutorial

-

Modularity

[s

Requires global
transforms

[ex (5o +8(92))
~ON

‘ Code duplication \

/6*5(¢1)+e*5(¢2)

N

~

J

Presenter
Presentation Notes
This approach we have described is fairly early-stage, so we want to emphasize a few limitations which are also potential future directions.

(*) A key requirement for discontinuities in our program is that they must be reducible to a single variable.
(*) Our system is able to do this automatically for certain linear and quadratic expressions, and we also allow the user to specify their own changes of coordinates while our system handles the necessary substitutions and Jacobian adjustments.
However, it is critical that these expressions are diffeomorphisms and this limits the expressions to those with a known inverse function.

(*)
Additionally, our semantics currently don’t support indexing or tensors, (*). And, we also assume that the programs are in an expression language – they are loop free.
	
(*)
Our transformation processes are also global. Every delta term is transformed in tandem with its associated integral, which means the two pieces cannot be differentiated separately as modules. (*) And this problem gets worse when there are several delta terms, since expressions get duplicated for each delta term.

There is important future work in solving these issues in order to scale to large applications.

'Systematically handling discontinuities: A Summary

Graphics programs

d 1
— || rasterize(t) ray_trace(t) / [x < t]|dx
0

dt simulate(t)/
U x
1 & -
/0 X < t|dx <

o)

N
AN

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
So in _summary_ (*) we’ve first looked at a general problem in differentiating graphics programs.
We then (*) proposed a new approach using (*) Dirac deltas to account for discontinuities. This (*) avoids the issue with traditional auto-diff which discretizes first and lose this information.
(*) And because deltas cannot be evaluated meaningfully as a primitive, we show that we then eliminate these using changes of coordinates followed by sifting.
We hope that this approach provides new insights for applications previously thought to be too difficult to differentiate by hand.

Mitsuba 2

¢ A general-purpose differentiable renderer developed by Jakob et al.

¢ Strengths

® Feature-rich (e.qg., supports hyper-spectral and polarized rendering)

® Efficient at handling many (e.g., millions) of parameters

e Weaknesses

® Currently ofters limited support for differentiation
with respect to geometry

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

PSDR-CUDA

o A GPU-based general-purpose differentiable renderer

® Built upon the same numerical backend (i.e., Enoki) as Mitsuba 2

® Much lighter weighted
® Python bindings via pybind11

® Implements path-space differentiable path tracing [Zhang et al. 2020, 2021] Ty PSDR-CUDAl =

® Fast and unbiased geometric gradients

Original image Derivative image Original image Derivative image
(w.r.t. rotation of the object) (w.r.t. rotation of the env. map)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Differentiating Image RMSE using PSDR-CUDA

import enoki as ek
from enoki.cuda_autodiff import Float32 as FloatD, Vector3f as Vector3fD, Matrix4f as Matrix4fD

import psdr cuda

= e = ———

— -

| # Load the scene without conflgurlng it |
1
i

scene = psdr_cuda Scene()
scene. load file(scene. xml', auto conflgure-False)

S —
\ — - = e e ————————

_— - e —— e ——

— —
—_— R —— —— — - - . W
j>_a e = ==
= — = = _ —— — - — — — —

ﬂ# Compute gradlent with respect to mesh vertex p051tlons
ek.set_requires_ gradlent(scene param map["Mesh[@]"] vertex p051tlons)

7~ — . —

Conflgure the scene - ‘

e ——— =
E—— _ - e

scene.configure()

Start rendering!
image = psdr cuda DirectIntegrator(). renderD(scene, Sensor_ 1d 0)

—

MM —

e e — —
—— . ————— —— e | e—r— = ——

i
= — = === - = = = = . N
|

Compute the RMSE 1mage . 10ss
loss = ek.sqrt(ek.hmean(ek.squared_norm(target_image - image))) i
|

—

Reverse—-mode autodiff
ek.backward(loss)
J

Obtain the gradient of the loss |
| grad = ek. gradlent(scene -param_ map["Mesh[@]"] vertex_positions) |

——— ——— — — —— — ———— =
— ——— e S e e — e — e —————— = S —— ———— —_— - — —_ = — -

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

(A) CAPTURE (B) PHOTOS (c) INIT. MODEL (D) OPT. MODEL (E) RENDERING

To appear at Eurographics Symposium on Rendering (EGSR) 2021

Joint work with Fujun Luan, Kavita Bala, and Zhao Dong

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Application: Shape and Material Reconstruction

® \We solve an analysis-by-synthesis problem by jointly optimizing:

® Object shape (i.e., positions of all mesh vertices) ‘ :
| > 1M parameters! |
® Object reflectance (as diffuse/specular albedo and roughness maps) | '

® | 0osses:

® Rendering loss (computed & differentiated using PSDR-CUDA)

® Regularization losses (e.g., mesh Laplacian, map smoothness)

® For improved robustness:
® Coarse-to-fine scheme

® \When updating vertex positions, use elTopo [Brochu et al. 2009] to avoid self-intersections

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Joint optimization of object shape and spatially varying reflectance (100 views used, 2 shown)

High

Rendering Abs. error

Low

Initial (Kinect Fusion) Optimized (using gradients generated by PSDR-CUDA) Target

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Gradient Accuracy Matters!

Inverse-rendering results with identical optimization settings

INIT. MESH SOFTRAS PYTORCH3D MITSUBA 2 NVDIFFRAST OURS GROUND TRUTH

0.0022 0.0016

0.0066 0.0023 0.0010 maneki

Relative err: 0% [1 30%

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

PHOTO. (NOVEL) NORMAL PHOTO. (NOVEL) NORMAL OURS (ENV. MAP)

(No normal mapping is used, all geometric details emerge from actual mesh geometries.)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Reconstruction Results of Real Objects

Re-rendering In

novel 3D scene

Object insertion in
augmented reality (AR)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Inverse-Rendering Performance

® Fach inverse-rendering optimization takes 15—100 minutes

® Inverse-rendering performance # differentiable-rendering performance

® Differentiable rendering only accounts for <4% of total optimization time

® (Geometric processing (e.g., collision detection) takes up to 70%

® \We need much better geometric processing systems!

® c.g., ellTopo [Brochuetal. 2009] is CPU-based and single-threaded

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

hand cream olive oil el CUracao

shampoo robitussin

i

mixed soap

whole milk -

)

milk soap

)

liquid clay
mustard ‘ ’

.

coffee | reduced milk

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

o |
o ——

Invert using
differentiable
rendering

7
i
O
O

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Synthetic renderings

mixed soap

——

glycerine soap olive ol curacao whole milk

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Inverse transport networks [Che et al. 2020}

* |Integrate physics-based rendering into machine learning pipeline
* Predict scattering parameters from images

Testing Training
Ot
g
image encoder parameters differentiable renderer image

* Utilize image loss provided by a volume path tracer to regularize training

* Use the trained encoder to perform inverse scattering during testing

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Examples

Groundtruth

Inverse transport network

parameter loss: 0.60x
appearance loss: 0.40x

Baseline

parameter loss: 1x
appearance loss: 1x

Physics-Based Differentiable Rendering

CVPR 2021 Tutorial

camera thick smoke cloud simulated camera reconstructed slice through
measurements cloud volume the cloud

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

iIndustrial dispersions efficient algorithms Compud toography
[Gkioulekas et al. 2013] [Nimier-David et al. 2019, 2020] [Geva et al. 2018]

o g e R Ry e T i e e
.lr.'F..ﬂ.H_._q-_.:_ll=:_.|.___|-_?- ir

woven fabrics 3D printing cloud tomography

[Khungurn et al. 2015, [Elek et al. 2019, [Levis et al. 2015,
Zhao et al. 2016] Nindel et al. 2021] 2017, 2020]

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Non-line-of-sight (NLOS) imaging

HON' NLOS
signal signal

A~
)
-
O
e
O
-
O
H-
N
>
—
),
-
O
e
C

source & sensor | Time-of-flight measurements

occluder

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

single-photon avalanche
photodlode (SPAD)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

visible surface

source
and
Sensor

100,000 vertices

Simulated time-of-flight data

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

NLOS shape optimization [Tsai et al. 2019]

Tmx1m
64 x 64 scan points

/ S ‘

scene initial mesh optimized mesh

_ _ [O'Toole et al. 2018]
Measured time-of-flight data

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Reflectometry from interreflections [Shem-Tov et al. 2020}

Direct illumination measurements

iEE. NEEEE

HEEE. NEEN
HEEEE. NEN

HEEEEE. NN
HEEEEEE. S
HEEEEEEE.
HEEEEEEER.
EEEEEEEER
EEEEEEEEE

Global illumination measurements

TR

>

o‘\.

Higher-order
bounces

HL. NEEEE
HEEE. NH' B
H HE. NEE
HEEE B NN

H B L S

HEEEEEENE. -
HE EEEER.

EEEE H B
HEE EEEEE

W, _ Wo
material sample fw;, w,)

+ Fewer measurements (single image)
- Non-linear analysis-by-synthesis optimization

material sample

f(wi’ a)o)

+ Intensities map directly to BRDF entries
- Many measurements (2D scan of light & camera)

Solvable using differentiable rendering

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

40

O

Single-bounce paths Two-bounce paths All-bounce paths

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Results on MERL dataset

Groundtruth

~ 6.3X
better
parameter
recovery

~ 11.2x
better
parameter
recovery

Optimized %\\\ Ul

shape :

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Global illumination can help...

* Reduce number of measurements required for inverse rendering
* We should rethink “optimal” acquisition systems O << T <o <?

* Resolve ambiguities between different types of parameters
* We should revisit theory problems on uniqueness results

Shape from interreflections Interreflections resolve the GBR ambiguity
[Nayar et al. 1990, Marr Prize] [Chandraker et al. 2005]

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

And also among the most widely used:

O Search or jump to... Pulls Issues Marketplace

H Bachili/redner

(> Watch ~ 39

<> Code Issues ' 33 Pull requests Actions Projects

¥ master ~ Go to file Add file ¥

. BachilLi Merge pull request #156 from mworchel/fix_o... on Mar 15 {v) 898

cmake Windows support and version bump (0.4... 15 months ago

docs fix masterdoc 2 years ago

examples Fix joint_material_envmap example 9 months ago

fit_ltc remove spherical integral 2 years ago

Physics-Based Differentiable Rendering

About

Differentiable rendering
without approximation.

& people.csail.mit.edu/tz...

computer-vision
tensorflow rendering

computer-graphics

pytorch

CVPR 2021 Tutorial

Differentiable Monte Carlo Ray Tracing through Edge Sampling

TZU-MAO LI, MIT CSAIL

MITKA AITTALA, MIT CSAIL

FREDO DURAND, MIT CSAIL

JAAKKO LEHTINEN, Aalto University & NVIDIA

Introduced with the first
unbiased differentiable

rendering algorithm
Li. 2018]

Presenter
Presentation Notes
Redner is the framework first introduced by the edge-sampling paper,
It’s one of the most popular differentiable renderers on Github right now.

It’s essentially a path tracer that implements edge sampling algorithm, but notable uses a BVH-style hierarchy for edges to accelerate edge-sampling.

'Redner is built from the ground up for ML applications

L

TensorFlow
("Eager” mode only)

O PyTorch

Loss|

redner

1
< .backward() \ .

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
One key thing I want to emphasize is that it is built from the ground up to be used as a tool for ML and computer vision applications, and as such it can slot right into a neural model that you might be working with. It slots in as a layer, takes as input shapes, light positions, camera pose, etcetera, and produces a physically realistic image.

You can use this as a differentiable layer in both pytorch or tensorflow, and backpropagate using unbiased gradients generated from redner.

Shuang and Ioannis have already gone into the details of a physically-based renderer, and redner is based on this model. However, PSDR uses the path space, while redner is based on edge-sampling.

Redner supports deferred rendering (if realistic rendering is not the goal)

A i
Q §> redner L>

% normals @

albedo

(say we can just use one bounce lighting)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
Some new features of redner:

redner offers G-buffer rendering for various different buffers like positions, normal, albedo. Your use case might also require these in addition to the realistic image for things like, maybe regularization..
Note that these G-buffers are very versatile and can be used for post-process lighting like SoftRas or Pytorch3D, but with accurate gradients through edge-sampling.
(Render provides a handy package for popular non-physical lights and materials.)

'Redner now contains two styles of differentiable rendering

pyredner.integrators. pyredner.integrators.

Differentiable Monte Carlo Ray Tracing through Edge Sampling Unbiased Warped-Area Sampling for Differentiable Rendering

SAl PRAVEEN BANGARU, Massachusetts Institute of Technology
TZU-MAO LI, Massachusetts Institute of Technology
FREDO DURAND, Massachusetts Institute of Tec hnology

TZU-MAOQO LI, MIT CSAIL

MITKA AITTALA, MIT CSAIL

FREDO DURAND, MIT CSAIL

JAAKKO LEHTINEN, Aalto University & NVIDIA

Edge-sampling /L/ et al. 2075] Warped-area sampling /Bangaru et al. 2020]

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
In the last update, Redner’s experimental branch now contains both edge sampling and the warp field method, so you can get the benefits of both!

pyredner.integrators.EdgeSamplingIntegrator()

-

Use edge-sampling for primary
visibility

Physics-Based Differentiable Rendering

~

Ground truth Edge-sampling

CVPR 2021 Tutorial

pyredner.integrators.WarpFieldIntegrator()

Warped-area

¥y

o g W e o

I_'-l—l.“_
.-1-‘-1_. i

Use WAS for higher-order

R

effects

~N

Presenter
Presentation Notes
We provide an easy way to swap between the two methods so you can choose which one to use based on the current requirement. As a general rule of thumb, (*) edge-sampling works great for primary visibility, while (*) warped sampling works better for higher-order illumination.

‘Use redner anywhere in your pipeline

4 A

o0

_ Optimize/Train morphable models Yy,

Physics-Based Differentiable Rendering

e
redner e

53% street sign

6.7% handrail

14.5% traffic light

™~
:$>Fﬁsh?

23.3% handrail
3.39% street sign or
traffic light

N

\

a)

redner

Optimize for fine-grained pose

v
h

CVPR 2021 Tutorial

Presenter
Presentation Notes
You can use render as a layer anywhere in your system!
For instance, (*) train the parameters of a morphable model to match a particular target.
Or, (*) you can use redner at the input to find adversarial examples for a classifier network.
Alternatively, (*) you can use it to optimize for fine-grained pose, by using the output from a different method as initialization.
And you can do so much more with a differentiable rendering layer,…

SCAN ME

Github codebase

SCAN ME
Sample notebook

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Presenter
Presentation Notes
So try it out today at the following links. Redner is GPU accelerated through NVIDIA OptiX, is available on all three platforms, and you can install it through pip!

Alternatively, you can even run it on the cloud, the bottom right links to an ipython notebook with a live example of optimizing a morphable model. You can even try it out on your phone if you want to.

CVPR 2021 Tutorial

slmmary

buliapuay ajqenuaJlayiq paseg-saisiyd

Take-Home Messages

® Great progress has been made in physics-based differentiable rendering

® Now capable of handling global illumination, arbitrary types of camera (e.g., transient), and global
scene parameters (e.qg., object geometry) with decent efficiency

® Can be applied to solve many general inverse problems

® Ray tracing is no longer slow

® Many efficient systems are being actively developed (e.g., Redner, PSDR-CUDA, Mitsuba 2, Teg)

® And differentiable rendering is usually not the performance bottleneck

¢ Gradient accuracy matters!

® Approximated gradients can yield reduced result quality

® Discontinuities always exist (due to visibility) and need to be properly handlea

® Auto-diffing a path tracer may not always work

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

Thank you!

Funding agencies Tutorial website

S https://diff-render.org
amaZon
—"

ALFRED P. SLOAN
FOUNDATION

)y T\

ceseasonnerroe Adobe

Physics-Based Differentiable Rendering CVPR 2021 Tutorial

https://diff-render.org

	pbdr-cvpr21-shuang-1
	pbdr-cvpr21_yannis_1
	pbdr-cvpr21-title-GI
	pbdr-cvpr21-shuang-2
	pbdr-cvpr21_sai_1
	pbdr-cvpr21-title-system
	pbdr-cvpr21_sai_2
	pbdr-cvpr21-shuang-3
	pbdr-cvpr21_yannis_2
	pbdr-cvpr21_sai_3
	pbdr-cvpr21-shuang-4

